Junde's picture
Update README.md
14f1d27 verified
|
raw
history blame
8.54 kB
---
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained('InstructPLM/MPNN-ProGen2-xlarge-CATH42', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('InstructPLM/MPNN-ProGen2-xlarge-CATH42', trust_remote_code=True)
model.cuda().eval()
model.requires_grad_(False)
batch = tokenizer('Fast-PETase.pyd|1MQTNPYARGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPESRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWHSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSQNAKQFLEIKGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTAVSDFRTANCS2',return_tensors='pt').to(device=model.device)
labels = batch.input_ids.masked_fill((1-batch.attention_mask).bool(), -100)
labels[:, :tokenizer.n_queries+1] = -100
batch["labels"] = labels
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.float16):
output = model(**batch)
print(output.loss.item())
batch = tokenizer('Fast-PETase.pyd|1',return_tensors='pt').to(device=model.device)
tokens_batch = model.generate(
**batch,
do_sample=True,
temperature=0.8,
max_length=512+tokenizer.n_queries,
min_new_tokens=5,
top_p=0.9,
num_return_sequences=5,
pad_token_id=0,
repetition_penalty=1.0,
bad_words_ids=[[3]]
)
texts = tokenizer.batch_decode(tokens_batch)
def truncate_seq(text):
bos = text.find('1')
eos = text.find('2')
if eos > bos and bos >= 0:
return text[bos+1:eos]
else:
return text[bos+1:]
print([truncate_seq(t) for t in texts])
# Ref. Seq
# 'MQTNPYARGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPESRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWHSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSQNAKQFLEIKGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTAVSDFRTANCS'
# Designed seq:
# 'METNPFHRGPDPTCASLEAGAGPFNVQSFRVDRPLGFGAGTVFYPTDAGGQVPAIAIAPGFTQTQSSVMWYGPRLASHGFVVIVIDTISTFDNPDSRSAQLLAALDQVANLNSNASSPIYGKVDTTRQAVMGHSMGGGGSLISAMNNPSLKAAAPMAPWHVSTNFSAVQVPTFIIGAENDTIAPVASHSIPFYNSIPSSLPKAYMELAGASHLAPNSSNPTIAKYSISWLKRFVDNDTRYEQFLCPAPTSTALISEYRDTCPY',
# 'EETNPYSKGPDPTAASLEASAGPFTVQSFSVARPLGFGAGTVYYPTDAGGKVGAIAVVPGYTDTQGSIRWWGPRLASHGFVVMTIDTISSYDQPDSRSAQLMAALDQLANLNSTSSSPIYNKVDTTRQAVMGHSMGGGGSLISAMNNPNLKAAIPMAPWHSSTNFSSVKVPTMILGAERDTVAPVSSHAEPFYNSLPSSTPKAYLELKGASHFFPNTTNTPTFAKSVLAWLKRFVDNDTRYEQFLCPGPTSTDLTDYRNTCPY',
# 'SETNPYIKGPDPTAASLEASAGAFTVQSFTVSRPTGFGAGTVYYPTDAGGRVGAIAIVPGYTATQSSIKWWGPRLASHGFVVMTIDTNSTYDQPDSRANQLMAALDQLTNLNSTRSSPIYGKVDTTRQGVMGHSMGGGGSLIAAQDNPNLKAAIPLAPWHSSSNFSSVTVPTLIIGAQNDTVAPVSSHSIPFYTSLPSSLDKAYLELNGASHFAPNSSNTTIAKYSISWLKRFIDNDTRYEQFLCPPPSGSALISEYRNTCPY',
# 'EETWPYHRGPDPTAASLEASAGPFTVQSFTVARPLGFGAGTVYYPTDAGGRVGAVAVVPGYTQTQSAIRWWGPRLASHGFVVMTIDTISTFDQPDSRSAQLLAALDQLAVLNSTRSSPIYNKVDTTRQGVMGHSMGGGGSLISAMNNPSLKAAVPLAPWHASTNFSNVQVPTLIIGASDDTTASVTTHSIPFYNSIPSSVPKAYLELQGQSHFCPNTSNTTIAKYSISWLKRFIDNDTRYDQFLCPPPNGSAISDYRSTCPH',
# 'METNPFIRGPNPTAASLEASAGPFQVSSFSVARPVGFGAGTVYYPTDAGGQVPAIAIAPGFTQTQASVKWYGPRLASHGFVVIVIDTNSTLDNPDSRSAQLLAALDQVSTLNSSSSSPIYGKVDTTRQGVMGHSMGGGGSLISAQNNPALKAAIPLAPWHVSTDFSGVTVPTLIIGAENDTVAPVGTHAEPFYNSIPSSTPKAYLELNNASHFAPNTSNTTIAKYSIAWLKRFVDNDTRYDQFLCPAPNGNAIQDYRDTCPH'
#
```
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]