yuwenz's picture
upload fp32 model
5dee588
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-base-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8946078431372549
- name: F1
type: f1
value: 0.9244288224956063
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base-mrpc
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5681
- Accuracy: 0.8946
- F1: 0.9244
- Combined Score: 0.9095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5.0
### Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3