|
--- |
|
license: apache-2.0 |
|
tags: |
|
- int8 |
|
- Intel® Neural Compressor |
|
- PostTrainingStatic |
|
datasets: |
|
- imagenet-1k |
|
metrics: |
|
- accuracy |
|
--- |
|
|
|
# The INT8 model based on vit-base-patch16-224 which finetuned on imagenet-1k |
|
|
|
### Post-training static quantization |
|
|
|
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). |
|
|
|
The original fp32 model comes from the fine-tuned model [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224). |
|
|
|
The calibration dataloader is the train dataloader. The default calibration sampling size 1000 because of 1000 classes of imagenet-1k. |
|
|
|
The linear modules **vit.encoder.layer.5.output.dense**, **vit.encoder.layer.9.attention.attention.query.module**, fall back to fp32 for less than 1% relative accuracy loss. |
|
|
|
### Evaluation result |
|
|
|
| |INT8|FP32| |
|
|---|:---:|:---:| |
|
| **Accuracy (eval-acc)** |80.576|81.326| |
|
| **Model size (MB)** |94|331| |
|
|
|
### Load with Intel® Neural Compressor: |
|
|
|
```python |
|
from neural_compressor.utils.load_huggingface import OptimizedModel |
|
int8_model = OptimizedModel.from_pretrained( |
|
'Intel/vit-base-patch16-224-int8-static', |
|
) |
|
``` |
|
|