|
--- |
|
language: en |
|
license: apache-2.0 |
|
library_name: transformers |
|
--- |
|
|
|
# SQFT Fine-tuned Model: sqft-sparsepeft-phi-3-mini-4k-30-math-heu |
|
|
|
- Base Model: [IntelLabs/sqft-phi-3-mini-4k-30-base](https://huggingface.co/IntelLabs/sqft-phi-3-mini-4k-30-base) |
|
- Sparsity: 30% |
|
- Quantization: No |
|
- Finetune Method: SQFT + SparsePEFT |
|
- Finetune data: 10K instruction-following math reasoning training dataset from [LLM-Adapters](https://github.com/AGI-Edgerunners/LLM-Adapters) ([math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json)) |
|
- Sub-Adapter: Heuristic |
|
|
|
### Evaluation |
|
|
|
```bash |
|
git clone https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.git haaml && cd haaml/SQFT |
|
|
|
MODEL_NAME=IntelLabs/sqft-sparsepeft-phi-3-mini-4k-30-math-heu |
|
OUTPUT_DIR=./results |
|
python eval/evaluate_math.py --base_model_path ${MODEL_NAME} --output_dir ${OUTPUT_DIR} |
|
``` |
|
|
|
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command. |
|
|
|
## Model Sources |
|
|
|
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) |
|
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750) |
|
|
|
## Citation |
|
|
|
```bash |
|
@article{munoz2024sqft, |
|
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models}, |
|
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, |
|
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Apache-2.0 |