JLB-JLB's picture
VIT_SEIZURE_231112
d0e7fe3
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - seizure-detection
  - generated_from_trainer
model-index:
  - name: seizure_vit_jlb_231112_fft_raw_combo
    results: []

seizure_vit_jlb_231112_fft_raw_combo

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the JLB-JLB/seizure_detection_224x224_raw_frequency dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4822
  • Roc Auc: 0.7667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Roc Auc
0.4777 0.17 500 0.5237 0.7455
0.4469 0.34 1000 0.5114 0.7542
0.4122 0.52 1500 0.5084 0.7567
0.3904 0.69 2000 0.5043 0.7611
0.3619 0.86 2500 0.5283 0.7609
0.3528 1.03 3000 0.5352 0.7517
0.3445 1.2 3500 0.5338 0.7572
0.3221 1.37 4000 0.5388 0.7509
0.3109 1.55 4500 0.5641 0.7458
0.3203 1.72 5000 0.5404 0.7574
0.294 1.89 5500 0.5421 0.7564
0.2964 2.06 6000 0.5582 0.7493
0.292 2.23 6500 0.5513 0.7561
0.2838 2.4 7000 0.5557 0.7598
0.2736 2.58 7500 0.5514 0.7606
0.2922 2.75 8000 0.5503 0.7538
0.2699 2.92 8500 0.5535 0.7578

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1