JaiSurya commited on
Commit
3ec724c
·
1 Parent(s): 8aae42a

Updating the PPO agent

Browse files
README.md CHANGED
@@ -5,7 +5,6 @@ tags:
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
8
- - gymnasium
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,57 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: 240.31 +/- 69.19
21
  name: mean_reward
22
  verified: false
23
- language:
24
- - en
25
- pipeline_tag: reinforcement-learning
26
  ---
27
 
28
  # **PPO** Agent playing **LunarLander-v2**
29
  This is a trained model of a **PPO** agent playing **LunarLander-v2**
30
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
31
-
32
- This model is trained with the help of [Deep RL Course by HuggingFace](https://huggingface.co/learn/deep-rl-course/unit0/introduction)
33
 
34
  ## Usage (with Stable-baselines3)
35
- ```python
36
- # necessary libraries
37
- import gymnasium as gym
38
-
39
- from huggingface_sb3 import load_from_hub, package_to_hub
40
- from huggingface_hub import (
41
- notebook_login,
42
- )
43
 
44
- from stable_baselines3 import PPO
45
- from stable_baselines3.common.env_util import make_vec_env
46
- from stable_baselines3.common.evaluation import evaluate_policy
47
- from stable_baselines3.common.monitor import Monitor
48
 
49
- # Step 1 : Create an environment
50
- env = gym.make("LunarLander-v2")
51
- observation,info = env.reset() # initialize the environment
52
-
53
- # Step 2 : Create the model
54
- model = PPO(
55
- policy = "MlpPolicy", # Multiple Layer Perceptron Policy
56
- env = env,
57
- n_steps = 1024,
58
- batch_size = 64,
59
- n_epochs = 5,
60
- gamma = 0.995, # discount factor
61
- gae_lambda = 0.98, # close to 1 - more bias and less variance
62
- ent_coef = 0.01, # exploration exploitation tradeoff
63
- verbose = 1
64
- )
65
-
66
- # Step 3 : Train the model
67
- model.learn(total_timesteps=2000000,progress_bar = True)
68
 
69
- # Step 4 : Evaluation
70
- eval_env = Monitor(gym.make("LunarLander-v2"))
71
- mean_reward,std_reward = evaluate_policy(model,eval_env,n_eval_episodes = 10 ,deterministic=True)
72
- print(f"Mean reward : {mean_reward} +/- {std_reward}")
73
- ```
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 264.51 +/- 16.47
20
  name: mean_reward
21
  verified: false
 
 
 
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
25
  This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
 
 
27
 
28
  ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
 
 
 
 
 
 
 
30
 
 
 
 
 
31
 
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ ...
37
+ ```
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0af0a9c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0af0a9cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0af0a9d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0af0a9e10>", "_build": "<function ActorCriticPolicy._build at 0x7fe0af0a9ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe0af0a9f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0af0a9fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0af0aa050>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe0af0aa0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0af0aa170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0af0aa200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0af0aa290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0af042140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2500608, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700547179196232581, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE0zyL2U2NY9eg/6PcfQr75XO9W7wF+ePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE4xzNliBqMAWyUS7eMAXSUR0C3a6txAB1cdX2UKGgGR0Bx1xMM7U5NaAdL1WgIR0C3bAvqkdmydX2UKGgGR0Bx75HOKO1faAdL12gIR0C3bHJMlC1JdX2UKGgGR0BoMnEfkmx/aAdN6ANoCEdAt29GkN4JNXV9lChoBkdAP80YXO4XoGgHS4hoCEdAt2+Wa+evp3V9lChoBkdAcXoJJ5E+gWgHS9FoCEdAt3CYcBEKE3V9lChoBkdAcn3zhxYJV2gHS8BoCEdAt3DwfcN6PnV9lChoBkdASeY1FYuCgGgHS6poCEdAt3E8cGTs6nV9lChoBkdAcjuGorFwUGgHS81oCEdAt3GXqfOD8XV9lChoBkdAb67+iJwbVGgHS7NoCEdAt3HmQtBfKXV9lChoBkdAcYZPomoitGgHS8xoCEdAt3KuqvNeMXV9lChoBkdAcPI3os7MgWgHS7loCEdAt3MEcvM8o3V9lChoBkdAcnRvTPSlWWgHS7JoCEdAt3NSBMBZIXV9lChoBkdATc4KD0163WgHS4doCEdAt3OPtCzC13V9lChoBkdAci1dbgTAWWgHS6xoCEdAt3PaebutwXV9lChoBkdAciPJ+UhV2mgHS+toCEdAt3RCJpFkQXV9lChoBkdAcnNxCY1HfGgHS+VoCEdAt3UQAcT8HnV9lChoBkdAcbW4VARkE2gHS8poCEdAt3VqFUQ043V9lChoBkdAcfL/1xsEaGgHS9FoCEdAt3XBTuOS4nV9lChoBkdAcT7GKhtcfWgHS7hoCEdAt3YYXHim23V9lChoBkdAcWIgmJFb3WgHS9BoCEdAt3ZzGrCFbnV9lChoBkdAcZQxRl6JImgHS9loCEdAt3dATVUdaXV9lChoBkdAcKoe4TbnHWgHTQ0BaAhHQLd3t5mAbyZ1fZQoaAZHQEaqyfL9uP5oB0ugaAhHQLd3/40/GER1fZQoaAZHQHDo996Tnq5oB0ukaAhHQLd4R+PBBRh1fZQoaAZHQHFZ2J3xFy9oB0u0aAhHQLd4lNCqp991fZQoaAZHQGzMdCeEqUhoB0vhaAhHQLd5YWOIZZV1fZQoaAZHQHBptozvZyxoB0u1aAhHQLd5sgydnTR1fZQoaAZHQHAYxoVVPvdoB0vHaAhHQLd6CVENOM51fZQoaAZHQHLNHwgDA8BoB0u8aAhHQLd6YjENvwV1fZQoaAZHQHGPl+Vkc0doB0vcaAhHQLd64sAeaKF1fZQoaAZHQHCSMUM5OrRoB0vNaAhHQLd764593KV1fZQoaAZHQHEJrOE/SploB0u3aAhHQLd8WdDpkf91fZQoaAZHQEgkIN3GGVRoB0uhaAhHQLd8viwSrYJ1fZQoaAZHQHGF8ImgJ1JoB0upaAhHQLd9I2606YF1fZQoaAZHQHDFmrjo6jpoB0uhaAhHQLd9kKOT7l91fZQoaAZHQHN01/6O5rhoB0vPaAhHQLd98DtgKF91fZQoaAZHQHHOPZ/Tb35oB0u9aAhHQLd+sfpUxVR1fZQoaAZHQHBgkHhS9/VoB0vJaAhHQLd/DO1OTJR1fZQoaAZHQHFGFUMoc71oB0vfaAhHQLd/bUjLSu11fZQoaAZHQFJ02WpqASZoB0uBaAhHQLd/p1uzhP11fZQoaAZHQHJ6EsFt8/loB0v2aAhHQLeADeuFHrh1fZQoaAZHQHHXFyBCladoB0vqaAhHQLeA50QK8cx1fZQoaAZHQHEHQKF7D2toB0uyaAhHQLeBM1Tzd1x1fZQoaAZHQHHEqdxyXD5oB0vSaAhHQLeBlc5sCT51fZQoaAZHQHHesUmD15BoB0vtaAhHQLeB/qDK5kN1fZQoaAZHQESd0V8CxNZoB0ugaAhHQLeCQcAzYVZ1fZQoaAZHQHFjh0Qsf7toB0u3aAhHQLeC//9Hc1x1fZQoaAZHQEKc0ojOcDtoB0uGaAhHQLeDPGgSOBF1fZQoaAZHQHEYogRsdktoB0uuaAhHQLeDjI6r/851fZQoaAZHQHMSnV09yLhoB0vMaAhHQLeD6urIYFd1fZQoaAZHQD7fGkvboKVoB0uYaAhHQLeEK8c+7lJ1fZQoaAZHQHAqVchTwUhoB0u2aAhHQLeEf88La251fZQoaAZHQHIVv07KaG5oB0vFaAhHQLeFO8E3bVV1fZQoaAZHQHCPLNSqEOBoB0vpaAhHQLeFpLXtjTd1fZQoaAZHQHF3Eona37VoB0uyaAhHQLeF8z3AVO91fZQoaAZHQHFOlRtP559oB0vGaAhHQLeGRxPfsNV1fZQoaAZHQHD+IMrmQsBoB03jA2gIR0C3iKR//echdX2UKGgGR0A63neBQN1AaAdLjGgIR0C3iPM7hegMdX2UKGgGR0BzSiN+9allaAdLtWgIR0C3iV655JK8dX2UKGgGR0ByXom2LHdXaAdL8mgIR0C3iqhvrGBGdX2UKGgGR0BkJJ3cHnloaAdN6ANoCEdAt41Gxs2vS3V9lChoBkdASFhOclPac2gHS4BoCEdAt42GRyOrAHV9lChoBkdAZh6UxmCiAWgHTegDaAhHQLeP8yIYWLx1fZQoaAZHQHFO5Ig/1QJoB0vdaAhHQLeQYiWmgrZ1fZQoaAZHQHLa2WUr08NoB0u0aAhHQLeQvsJY1YR1fZQoaAZHQGP++9alk6NoB03oA2gIR0C3kvQcPvrodX2UKGgGR0BxwyIUJv5yaAdL4WgIR0C3k1kDEFW5dX2UKGgGR0BySHvVmSQpaAdL2WgIR0C3lCF/MGHIdX2UKGgGR0Bx741n/T9baAdL52gIR0C3lJDImw7ldX2UKGgGR0ByQwzyjHn2aAdL5GgIR0C3lPYl6Z6VdX2UKGgGR0Bw0mcawUxmaAdLqmgIR0C3lUMIiTt+dX2UKGgGR0ByBQAR02cbaAdL9GgIR0C3ldPdIoVmdX2UKGgGR0BkK9Zs9B8haAdN6ANoCEdAt5i2TibUgHV9lChoBkdAck6SPEKmbmgHS/1oCEdAt5mN9iMHbHV9lChoBkdAbhXTaTOgQGgHS7BoCEdAt5nbkPtlZ3V9lChoBkdAb4U0lZ5iVmgHS9xoCEdAt5o/OeJ53XV9lChoBkdASTcU/OdGzGgHS4FoCEdAt5p6g6EJ0HV9lChoBkdAN1ULhJiAlWgHS4ZoCEdAt5qx9c8klnV9lChoBkdAcJ8CDVYp2GgHS8JoCEdAt5sFIDoyK3V9lChoBkdAcYlvKlpGnWgHS7ZoCEdAt5vArwvxpnV9lChoBkdARXU+7lJYkmgHS2poCEdAt5vw/wAlwHV9lChoBkdAT73UF0PpZGgHS39oCEdAt5wnAeq7y3V9lChoBkdAZ8wM4tHx0GgHTegDaAhHQLeeQAMlTm51fZQoaAZHQHGfgZXMhX9oB0vPaAhHQLeem8zQ/ot1fZQoaAZHQD+RS1mapgloB0uTaAhHQLee2tqYZ2p1fZQoaAZHQGVqk0Jng51oB03oA2gIR0C3oQYwAU+LdX2UKGgGR0Bu4xBZ6lchaAdLwGgIR0C3oV1rIo3KdX2UKGgGR0BmE+YrrgO0aAdN6ANoCEdAt6PTLHMlknV9lChoBkdAcaMYUnG83GgHS8toCEdAt6TVybQTmHV9lChoBkdAcoux2jfvW2gHS7FoCEdAt6U74sVclnV9lChoBkdAcE8JHy3CsWgHS9hoCEdAt6XJgb6xgXV9lChoBkdAbx/O1v2oN2gHS7VoCEdAt6YdMmF8HHV9lChoBkdAcHTPSlWOqGgHS7xoCEdAt6Z0XyiEhHV9lChoBkdAcYyF7D2rXGgHS69oCEdAt6a/2pQ1rXV9lChoBkdAcBbwBYFJQWgHS8NoCEdAt6eGJFb3XnV9lChoBkdAcnSvIwM6R2gHS+BoCEdAt6fllyzXz3V9lChoBkdAcYp0b961LWgHS6NoCEdAt6guA8Swn3V9lChoBkdAROhFLFn7HmgHS35oCEdAt6hl2t+1B3V9lChoBkdAcmC6/IsAemgHS9xoCEdAt6jNZmqYJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12210, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79b9787f1090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b9787f1120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b9787f11b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b9787f1240>", "_build": "<function ActorCriticPolicy._build at 0x79b9787f12d0>", "forward": "<function ActorCriticPolicy.forward at 0x79b9787f1360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b9787f13f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b9787f1480>", "_predict": "<function ActorCriticPolicy._predict at 0x79b9787f1510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b9787f15a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b9787f1630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b9787f16c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79b9787f46c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2500608, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700830269684855999, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNhcb171pO68iCGtVZAALGEmDg7jCO4NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAVwZ0jkdWMAWyUTTMBjAF0lEdAtF4RB+nZTXV9lChoBkdAckoZcLSeAmgHTRQBaAhHQLRefvFFUhp1fZQoaAZHQG9hkWZZ0S1oB00LAWgIR0C0Xu5fUnXvdX2UKGgGR0BxbbCiyprDaAdNIQFoCEdAtF/PHq/ucHV9lChoBkdAcO/jVhCtzWgHTc4BaAhHQLRgibQkX1t1fZQoaAZHwDFCw+t8uz1oB0uxaAhHQLRg0ZydWhh1fZQoaAZHQHGYATEit7toB013AWgIR0C0YdDeKsMidX2UKGgGR0BCAKT8pCrtaAdL1mgIR0C0YibhJiAldX2UKGgGR0Btptev6j33aAdNQAFoCEdAtGKmSjgydnV9lChoBkdAcTAx5LRKH2gHTRMBaAhHQLRjE2CuloF1fZQoaAZHQHJLZAt4A0doB01EAWgIR0C0Y/4NI9TxdX2UKGgGR0Bu6svoNd7faAdNDQFoCEdAtGRrNX5nDnV9lChoBkdAUtSQhfShJ2gHTegDaAhHQLRmdI4EOiF1fZQoaAZHQG4nPm5lOGloB01FAWgIR0C0ZxsIu5BkdX2UKGgGR0BtKu2NNrTIaAdNEAFoCEdAtGgqmQ8wH3V9lChoBkdAboG5TZQHiWgHTSoBaAhHQLRozw3HaOB1fZQoaAZHQHGXOBQN0/5oB01mAWgIR0C0aXk52hZhdX2UKGgGR0BuggIjW07baAdNLwFoCEdAtGn2gsbvPXV9lChoBkdAcZiXRw6ySmgHTQ4BaAhHQLRqyJkGzKN1fZQoaAZHQHF0C2+fywxoB01gAWgIR0C0a1ZwbVBldX2UKGgGR0BwoC2qkuYhaAdNVQFoCEdAtGvlQTEiuHV9lChoBkdAbvSMx46fa2gHTREBaAhHQLRsudt2s7x1fZQoaAZHQHBvpEx7AtZoB01SAWgIR0C0bT6Rp1zRdX2UKGgGR0BxiMT4+KTCaAdNPAFoCEdAtG26VGCqZXV9lChoBkdAcJ5ZxJd0JWgHTRYBaAhHQLRuklqagEl1fZQoaAZHQHBlAHNX5nFoB0v8aAhHQLRu91eSjg11fZQoaAZHQG2MIR7JGONoB01UAWgIR0C0b3ysXBP9dX2UKGgGR0BvHUMEzO5baAdN1wFoCEdAtHCdvjwQUnV9lChoBkdAbs3p+tr9EWgHTQMBaAhHQLRxBotcv/R1fZQoaAZHQHJk+4G2TgVoB0v/aAhHQLRxbQpnYg91fZQoaAZHQG/17V8Ti85oB01ZAWgIR0C0cfadMCcPdX2UKGgGR0BvpCUiY9gXaAdNRAFoCEdAtHLfwZwXInV9lChoBkdAa9TSZSeiBWgHTR8BaAhHQLRzYddVvMt1fZQoaAZHQGyhsDGLk0doB00rAWgIR0C0dARd6cAjdX2UKGgGR0BwMFPUKArhaAdNiAFoCEdAtHVS0mdAgXV9lChoBkdAVOTYNAkcCGgHTegDaAhHQLR3fMH8jzJ1fZQoaAZHQHJlU3XI2floB00eAWgIR0C0d/0M5OrRdX2UKGgGR0By7kd92HLzaAdNVQFoCEdAtHiIRL9MsnV9lChoBkdAOKZMg2ZRbmgHS7RoCEdAtHk1N34bj3V9lChoBkdAbTsm2sq8UWgHTUIBaAhHQLR5sv+wTuh1fZQoaAZHQHC+4fGMn7ZoB00hAWgIR0C0ei0N4JNTdX2UKGgGR0BvzGaBqbjMaAdNDgFoCEdAtHqXX9R77nV9lChoBkdAay9WLgn+h2gHTS4BaAhHQLR7d3K0UoN1fZQoaAZHQHH1Kp5u63BoB01vAWgIR0C0fAym2sq8dX2UKGgGR0BwNUjHGS6laAdNIwFoCEdAtHx9DKHO8nV9lChoBkdAcBomuTzNEGgHTQoBaAhHQLR9UjqfOD91fZQoaAZHQHEapvHcUM5oB01GAWgIR0C0fdfhZQpGdX2UKGgGR0Bwu+912aDxaAdNPwFoCEdAtH5ckeIVM3V9lChoBkdAcYvJWvKU3WgHTU4BaAhHQLR/SbB42TB1fZQoaAZHQG9XTVc2R7toB00SAWgIR0C0f7fTXrdFdX2UKGgGR0Bwsv4TK1XvaAdNMQFoCEdAtIBIMfA9FHV9lChoBkdAcCkbRF7UomgHTYIBaAhHQLSBFX+VC5V1fZQoaAZHQHBk8NMGorFoB00GAWgIR0C0gh6wt8NQdX2UKGgGR0BrHGmpEQXiaAdNFQFoCEdAtIK8tK7I1nV9lChoBkdAcEtviLl3hWgHTUEBaAhHQLSDUUEPlMh1fZQoaAZHQG6kokqtozxoB01TAWgIR0C0hDtqDbrUdX2UKGgGR0BxpT29L6DXaAdNqAFoCEdAtITl/NJOFnV9lChoBkdAbDuUYbbUPWgHTRUBaAhHQLSFU/qgRK91fZQoaAZHQHC0fW+XZ5BoB0v+aAhHQLSGGeUY8+11fZQoaAZHQG3nC5Etuk1oB00oAWgIR0C0ho7zPKMedX2UKGgGR0ByUGxVyWAxaAdNNgFoCEdAtIcIiX6ZY3V9lChoBkdAa6ZvXsgMdGgHTVIBaAhHQLSHkknkT6B1fZQoaAZHQHFzS1E3KjloB01nAWgIR0C0iIiHZbpvdX2UKGgGR0BwAhf5ULlWaAdNDwFoCEdAtIj5tVJcxHV9lChoBkdAcJ2LhJiAlWgHTR0BaAhHQLSJbdd3Srp1fZQoaAZHQHCW30TURWdoB00WAWgIR0C0ikADvE0jdX2UKGgGR0BSOmHtWuHOaAdN6ANoCEdAtIw0XDWK/HV9lChoBkdAcVQ0NjLB9GgHTRoBaAhHQLSMo0iyIHl1fZQoaAZHQHGCZaiblRxoB00aAWgIR0C0jSVHFxXGdX2UKGgGR0BuM5Z+x4Y8aAdNAAFoCEdAtI2vDUExI3V9lChoBkdAb/aUKzAvc2gHTWcBaAhHQLSO698Z1mt1fZQoaAZHQG8ACdjG1hNoB01SAWgIR0C0j7wHZ9NOdX2UKGgGR0BwgeTNdJJ5aAdNSAFoCEdAtJBBtxdY4nV9lChoBkdAcUcUr08NhGgHTVEBaAhHQLSRNRx95Qh1fZQoaAZHQDDDmEGqxTtoB00gAWgIR0C0kaf7SApbdX2UKGgGR0BufiEg4ffXaAdNFgFoCEdAtJIVckdFOXV9lChoBkdAcWv3nIQvpWgHTTsBaAhHQLSS+mgam411fZQoaAZHQG4sYDklu3toB00wAWgIR0C0k3QIdELIdX2UKGgGR0Bvje7UXpGGaAdNWgFoCEdAtJP/gIhQnHV9lChoBkdAbFDYLb5/LGgHTSABaAhHQLSU1LJjlPt1fZQoaAZHQHF8btzCDVZoB0v6aAhHQLSVM5Qxesx1fZQoaAZHQG/IQVbiZOVoB00RAWgIR0C0laOMdcSodX2UKGgGR0AkhyksSTQmaAdLomgIR0C0leShJyyVdX2UKGgGR0Bwwbm9xp+MaAdNNQFoCEdAtJbDSMLncXV9lChoBkdAcExSUC7sfWgHTVoBaAhHQLSXTZ9NN8F1fZQoaAZHQHANyflIVdpoB00nAWgIR0C0l8VjmSyMdX2UKGgGR0BuSYcYIjW1aAdNawFoCEdAtJhUd1dPcnV9lChoBkdAcFQ0Mw1zhmgHTWABaAhHQLSZRFCswL51fZQoaAZHQG6msSCe2/loB01HAWgIR0C0mcgo5PuYdX2UKGgGR0Bvcbj5sTFmaAdNEAFoCEdAtJpc4Ia99XV9lChoBkdAcdDinpB5X2gHTT0BaAhHQLSbiFGXokl1fZQoaAZHQHIW2GM4tHxoB00PAWgIR0C0nCFXeWOZdX2UKGgGR0BwPMR8MNMHaAdNKQFoCEdAtJzERGtp23V9lChoBkdAcQT7+kxh2GgHTW8BaAhHQLSdwq1w5vN1fZQoaAZHQG7dfY8Md95oB00vAWgIR0C0njoo3JgcdX2UKGgGR8AsYBUaQ3glaAdLvWgIR0C0noRAbADadX2UKGgGR0Bt0XUONHYpaAdNJwFoCEdAtJ75MBZIQXV9lChoBkdAb+qtrbg0j2gHTTwBaAhHQLSf3mgam411fZQoaAZHQG+V8J2MbWFoB01jAWgIR0C0oGwfp2U0dX2UKGgGR0Akpudf9gndaAdLsGgIR0C0oLSXD3uedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12210, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-lunar-lander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:63661e680b26b2609ef2bc8bae7c28220eafba8c42a1163cb5353a429372e5ee
3
- size 147278
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea29520399de50874d0c79c02ad68149d0929b30f5ec82e77ad3db8cb88bbed6
3
+ size 147384
ppo-lunar-lander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0af0a9c60>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0af0a9cf0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0af0a9d80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0af0a9e10>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fe0af0a9ea0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fe0af0a9f30>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0af0a9fc0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0af0aa050>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fe0af0aa0e0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0af0aa170>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0af0aa200>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0af0aa290>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fe0af042140>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1700547179196232581,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE0zyL2U2NY9eg/6PcfQr75XO9W7wF+ePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE4xzNliBqMAWyUS7eMAXSUR0C3a6txAB1cdX2UKGgGR0Bx1xMM7U5NaAdL1WgIR0C3bAvqkdmydX2UKGgGR0Bx75HOKO1faAdL12gIR0C3bHJMlC1JdX2UKGgGR0BoMnEfkmx/aAdN6ANoCEdAt29GkN4JNXV9lChoBkdAP80YXO4XoGgHS4hoCEdAt2+Wa+evp3V9lChoBkdAcXoJJ5E+gWgHS9FoCEdAt3CYcBEKE3V9lChoBkdAcn3zhxYJV2gHS8BoCEdAt3DwfcN6PnV9lChoBkdASeY1FYuCgGgHS6poCEdAt3E8cGTs6nV9lChoBkdAcjuGorFwUGgHS81oCEdAt3GXqfOD8XV9lChoBkdAb67+iJwbVGgHS7NoCEdAt3HmQtBfKXV9lChoBkdAcYZPomoitGgHS8xoCEdAt3KuqvNeMXV9lChoBkdAcPI3os7MgWgHS7loCEdAt3MEcvM8o3V9lChoBkdAcnRvTPSlWWgHS7JoCEdAt3NSBMBZIXV9lChoBkdATc4KD0163WgHS4doCEdAt3OPtCzC13V9lChoBkdAci1dbgTAWWgHS6xoCEdAt3PaebutwXV9lChoBkdAciPJ+UhV2mgHS+toCEdAt3RCJpFkQXV9lChoBkdAcnNxCY1HfGgHS+VoCEdAt3UQAcT8HnV9lChoBkdAcbW4VARkE2gHS8poCEdAt3VqFUQ043V9lChoBkdAcfL/1xsEaGgHS9FoCEdAt3XBTuOS4nV9lChoBkdAcT7GKhtcfWgHS7hoCEdAt3YYXHim23V9lChoBkdAcWIgmJFb3WgHS9BoCEdAt3ZzGrCFbnV9lChoBkdAcZQxRl6JImgHS9loCEdAt3dATVUdaXV9lChoBkdAcKoe4TbnHWgHTQ0BaAhHQLd3t5mAbyZ1fZQoaAZHQEaqyfL9uP5oB0ugaAhHQLd3/40/GER1fZQoaAZHQHDo996Tnq5oB0ukaAhHQLd4R+PBBRh1fZQoaAZHQHFZ2J3xFy9oB0u0aAhHQLd4lNCqp991fZQoaAZHQGzMdCeEqUhoB0vhaAhHQLd5YWOIZZV1fZQoaAZHQHBptozvZyxoB0u1aAhHQLd5sgydnTR1fZQoaAZHQHAYxoVVPvdoB0vHaAhHQLd6CVENOM51fZQoaAZHQHLNHwgDA8BoB0u8aAhHQLd6YjENvwV1fZQoaAZHQHGPl+Vkc0doB0vcaAhHQLd64sAeaKF1fZQoaAZHQHCSMUM5OrRoB0vNaAhHQLd764593KV1fZQoaAZHQHEJrOE/SploB0u3aAhHQLd8WdDpkf91fZQoaAZHQEgkIN3GGVRoB0uhaAhHQLd8viwSrYJ1fZQoaAZHQHGF8ImgJ1JoB0upaAhHQLd9I2606YF1fZQoaAZHQHDFmrjo6jpoB0uhaAhHQLd9kKOT7l91fZQoaAZHQHN01/6O5rhoB0vPaAhHQLd98DtgKF91fZQoaAZHQHHOPZ/Tb35oB0u9aAhHQLd+sfpUxVR1fZQoaAZHQHBgkHhS9/VoB0vJaAhHQLd/DO1OTJR1fZQoaAZHQHFGFUMoc71oB0vfaAhHQLd/bUjLSu11fZQoaAZHQFJ02WpqASZoB0uBaAhHQLd/p1uzhP11fZQoaAZHQHJ6EsFt8/loB0v2aAhHQLeADeuFHrh1fZQoaAZHQHHXFyBCladoB0vqaAhHQLeA50QK8cx1fZQoaAZHQHEHQKF7D2toB0uyaAhHQLeBM1Tzd1x1fZQoaAZHQHHEqdxyXD5oB0vSaAhHQLeBlc5sCT51fZQoaAZHQHHesUmD15BoB0vtaAhHQLeB/qDK5kN1fZQoaAZHQESd0V8CxNZoB0ugaAhHQLeCQcAzYVZ1fZQoaAZHQHFjh0Qsf7toB0u3aAhHQLeC//9Hc1x1fZQoaAZHQEKc0ojOcDtoB0uGaAhHQLeDPGgSOBF1fZQoaAZHQHEYogRsdktoB0uuaAhHQLeDjI6r/851fZQoaAZHQHMSnV09yLhoB0vMaAhHQLeD6urIYFd1fZQoaAZHQD7fGkvboKVoB0uYaAhHQLeEK8c+7lJ1fZQoaAZHQHAqVchTwUhoB0u2aAhHQLeEf88La251fZQoaAZHQHIVv07KaG5oB0vFaAhHQLeFO8E3bVV1fZQoaAZHQHCPLNSqEOBoB0vpaAhHQLeFpLXtjTd1fZQoaAZHQHF3Eona37VoB0uyaAhHQLeF8z3AVO91fZQoaAZHQHFOlRtP559oB0vGaAhHQLeGRxPfsNV1fZQoaAZHQHD+IMrmQsBoB03jA2gIR0C3iKR//echdX2UKGgGR0A63neBQN1AaAdLjGgIR0C3iPM7hegMdX2UKGgGR0BzSiN+9allaAdLtWgIR0C3iV655JK8dX2UKGgGR0ByXom2LHdXaAdL8mgIR0C3iqhvrGBGdX2UKGgGR0BkJJ3cHnloaAdN6ANoCEdAt41Gxs2vS3V9lChoBkdASFhOclPac2gHS4BoCEdAt42GRyOrAHV9lChoBkdAZh6UxmCiAWgHTegDaAhHQLeP8yIYWLx1fZQoaAZHQHFO5Ig/1QJoB0vdaAhHQLeQYiWmgrZ1fZQoaAZHQHLa2WUr08NoB0u0aAhHQLeQvsJY1YR1fZQoaAZHQGP++9alk6NoB03oA2gIR0C3kvQcPvrodX2UKGgGR0BxwyIUJv5yaAdL4WgIR0C3k1kDEFW5dX2UKGgGR0BySHvVmSQpaAdL2WgIR0C3lCF/MGHIdX2UKGgGR0Bx741n/T9baAdL52gIR0C3lJDImw7ldX2UKGgGR0ByQwzyjHn2aAdL5GgIR0C3lPYl6Z6VdX2UKGgGR0Bw0mcawUxmaAdLqmgIR0C3lUMIiTt+dX2UKGgGR0ByBQAR02cbaAdL9GgIR0C3ldPdIoVmdX2UKGgGR0BkK9Zs9B8haAdN6ANoCEdAt5i2TibUgHV9lChoBkdAck6SPEKmbmgHS/1oCEdAt5mN9iMHbHV9lChoBkdAbhXTaTOgQGgHS7BoCEdAt5nbkPtlZ3V9lChoBkdAb4U0lZ5iVmgHS9xoCEdAt5o/OeJ53XV9lChoBkdASTcU/OdGzGgHS4FoCEdAt5p6g6EJ0HV9lChoBkdAN1ULhJiAlWgHS4ZoCEdAt5qx9c8klnV9lChoBkdAcJ8CDVYp2GgHS8JoCEdAt5sFIDoyK3V9lChoBkdAcYlvKlpGnWgHS7ZoCEdAt5vArwvxpnV9lChoBkdARXU+7lJYkmgHS2poCEdAt5vw/wAlwHV9lChoBkdAT73UF0PpZGgHS39oCEdAt5wnAeq7y3V9lChoBkdAZ8wM4tHx0GgHTegDaAhHQLeeQAMlTm51fZQoaAZHQHGfgZXMhX9oB0vPaAhHQLeem8zQ/ot1fZQoaAZHQD+RS1mapgloB0uTaAhHQLee2tqYZ2p1fZQoaAZHQGVqk0Jng51oB03oA2gIR0C3oQYwAU+LdX2UKGgGR0Bu4xBZ6lchaAdLwGgIR0C3oV1rIo3KdX2UKGgGR0BmE+YrrgO0aAdN6ANoCEdAt6PTLHMlknV9lChoBkdAcaMYUnG83GgHS8toCEdAt6TVybQTmHV9lChoBkdAcoux2jfvW2gHS7FoCEdAt6U74sVclnV9lChoBkdAcE8JHy3CsWgHS9hoCEdAt6XJgb6xgXV9lChoBkdAbx/O1v2oN2gHS7VoCEdAt6YdMmF8HHV9lChoBkdAcHTPSlWOqGgHS7xoCEdAt6Z0XyiEhHV9lChoBkdAcYyF7D2rXGgHS69oCEdAt6a/2pQ1rXV9lChoBkdAcBbwBYFJQWgHS8NoCEdAt6eGJFb3XnV9lChoBkdAcnSvIwM6R2gHS+BoCEdAt6fllyzXz3V9lChoBkdAcYp0b961LWgHS6NoCEdAt6guA8Swn3V9lChoBkdAROhFLFn7HmgHS35oCEdAt6hl2t+1B3V9lChoBkdAcmC6/IsAemgHS9xoCEdAt6jNZmqYJHVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -80,14 +80,14 @@
80
  "n_steps": 1024,
81
  "gamma": 0.995,
82
  "gae_lambda": 0.98,
83
- "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
  "n_epochs": 5,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79b9787f1090>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b9787f1120>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b9787f11b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b9787f1240>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79b9787f12d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79b9787f1360>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b9787f13f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b9787f1480>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79b9787f1510>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b9787f15a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b9787f1630>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b9787f16c0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79b9787f46c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1700830269684855999,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNhcb171pO68iCGtVZAALGEmDg7jCO4NAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAVwZ0jkdWMAWyUTTMBjAF0lEdAtF4RB+nZTXV9lChoBkdAckoZcLSeAmgHTRQBaAhHQLRefvFFUhp1fZQoaAZHQG9hkWZZ0S1oB00LAWgIR0C0Xu5fUnXvdX2UKGgGR0BxbbCiyprDaAdNIQFoCEdAtF/PHq/ucHV9lChoBkdAcO/jVhCtzWgHTc4BaAhHQLRgibQkX1t1fZQoaAZHwDFCw+t8uz1oB0uxaAhHQLRg0ZydWhh1fZQoaAZHQHGYATEit7toB013AWgIR0C0YdDeKsMidX2UKGgGR0BCAKT8pCrtaAdL1mgIR0C0YibhJiAldX2UKGgGR0Btptev6j33aAdNQAFoCEdAtGKmSjgydnV9lChoBkdAcTAx5LRKH2gHTRMBaAhHQLRjE2CuloF1fZQoaAZHQHJLZAt4A0doB01EAWgIR0C0Y/4NI9TxdX2UKGgGR0Bu6svoNd7faAdNDQFoCEdAtGRrNX5nDnV9lChoBkdAUtSQhfShJ2gHTegDaAhHQLRmdI4EOiF1fZQoaAZHQG4nPm5lOGloB01FAWgIR0C0ZxsIu5BkdX2UKGgGR0BtKu2NNrTIaAdNEAFoCEdAtGgqmQ8wH3V9lChoBkdAboG5TZQHiWgHTSoBaAhHQLRozw3HaOB1fZQoaAZHQHGXOBQN0/5oB01mAWgIR0C0aXk52hZhdX2UKGgGR0BuggIjW07baAdNLwFoCEdAtGn2gsbvPXV9lChoBkdAcZiXRw6ySmgHTQ4BaAhHQLRqyJkGzKN1fZQoaAZHQHF0C2+fywxoB01gAWgIR0C0a1ZwbVBldX2UKGgGR0BwoC2qkuYhaAdNVQFoCEdAtGvlQTEiuHV9lChoBkdAbvSMx46fa2gHTREBaAhHQLRsudt2s7x1fZQoaAZHQHBvpEx7AtZoB01SAWgIR0C0bT6Rp1zRdX2UKGgGR0BxiMT4+KTCaAdNPAFoCEdAtG26VGCqZXV9lChoBkdAcJ5ZxJd0JWgHTRYBaAhHQLRuklqagEl1fZQoaAZHQHBlAHNX5nFoB0v8aAhHQLRu91eSjg11fZQoaAZHQG2MIR7JGONoB01UAWgIR0C0b3ysXBP9dX2UKGgGR0BvHUMEzO5baAdN1wFoCEdAtHCdvjwQUnV9lChoBkdAbs3p+tr9EWgHTQMBaAhHQLRxBotcv/R1fZQoaAZHQHJk+4G2TgVoB0v/aAhHQLRxbQpnYg91fZQoaAZHQG/17V8Ti85oB01ZAWgIR0C0cfadMCcPdX2UKGgGR0BvpCUiY9gXaAdNRAFoCEdAtHLfwZwXInV9lChoBkdAa9TSZSeiBWgHTR8BaAhHQLRzYddVvMt1fZQoaAZHQGyhsDGLk0doB00rAWgIR0C0dARd6cAjdX2UKGgGR0BwMFPUKArhaAdNiAFoCEdAtHVS0mdAgXV9lChoBkdAVOTYNAkcCGgHTegDaAhHQLR3fMH8jzJ1fZQoaAZHQHJlU3XI2floB00eAWgIR0C0d/0M5OrRdX2UKGgGR0By7kd92HLzaAdNVQFoCEdAtHiIRL9MsnV9lChoBkdAOKZMg2ZRbmgHS7RoCEdAtHk1N34bj3V9lChoBkdAbTsm2sq8UWgHTUIBaAhHQLR5sv+wTuh1fZQoaAZHQHC+4fGMn7ZoB00hAWgIR0C0ei0N4JNTdX2UKGgGR0BvzGaBqbjMaAdNDgFoCEdAtHqXX9R77nV9lChoBkdAay9WLgn+h2gHTS4BaAhHQLR7d3K0UoN1fZQoaAZHQHH1Kp5u63BoB01vAWgIR0C0fAym2sq8dX2UKGgGR0BwNUjHGS6laAdNIwFoCEdAtHx9DKHO8nV9lChoBkdAcBomuTzNEGgHTQoBaAhHQLR9UjqfOD91fZQoaAZHQHEapvHcUM5oB01GAWgIR0C0fdfhZQpGdX2UKGgGR0Bwu+912aDxaAdNPwFoCEdAtH5ckeIVM3V9lChoBkdAcYvJWvKU3WgHTU4BaAhHQLR/SbB42TB1fZQoaAZHQG9XTVc2R7toB00SAWgIR0C0f7fTXrdFdX2UKGgGR0Bwsv4TK1XvaAdNMQFoCEdAtIBIMfA9FHV9lChoBkdAcCkbRF7UomgHTYIBaAhHQLSBFX+VC5V1fZQoaAZHQHBk8NMGorFoB00GAWgIR0C0gh6wt8NQdX2UKGgGR0BrHGmpEQXiaAdNFQFoCEdAtIK8tK7I1nV9lChoBkdAcEtviLl3hWgHTUEBaAhHQLSDUUEPlMh1fZQoaAZHQG6kokqtozxoB01TAWgIR0C0hDtqDbrUdX2UKGgGR0BxpT29L6DXaAdNqAFoCEdAtITl/NJOFnV9lChoBkdAbDuUYbbUPWgHTRUBaAhHQLSFU/qgRK91fZQoaAZHQHC0fW+XZ5BoB0v+aAhHQLSGGeUY8+11fZQoaAZHQG3nC5Etuk1oB00oAWgIR0C0ho7zPKMedX2UKGgGR0ByUGxVyWAxaAdNNgFoCEdAtIcIiX6ZY3V9lChoBkdAa6ZvXsgMdGgHTVIBaAhHQLSHkknkT6B1fZQoaAZHQHFzS1E3KjloB01nAWgIR0C0iIiHZbpvdX2UKGgGR0BwAhf5ULlWaAdNDwFoCEdAtIj5tVJcxHV9lChoBkdAcJ2LhJiAlWgHTR0BaAhHQLSJbdd3Srp1fZQoaAZHQHCW30TURWdoB00WAWgIR0C0ikADvE0jdX2UKGgGR0BSOmHtWuHOaAdN6ANoCEdAtIw0XDWK/HV9lChoBkdAcVQ0NjLB9GgHTRoBaAhHQLSMo0iyIHl1fZQoaAZHQHGCZaiblRxoB00aAWgIR0C0jSVHFxXGdX2UKGgGR0BuM5Z+x4Y8aAdNAAFoCEdAtI2vDUExI3V9lChoBkdAb/aUKzAvc2gHTWcBaAhHQLSO698Z1mt1fZQoaAZHQG8ACdjG1hNoB01SAWgIR0C0j7wHZ9NOdX2UKGgGR0BwgeTNdJJ5aAdNSAFoCEdAtJBBtxdY4nV9lChoBkdAcUcUr08NhGgHTVEBaAhHQLSRNRx95Qh1fZQoaAZHQDDDmEGqxTtoB00gAWgIR0C0kaf7SApbdX2UKGgGR0BufiEg4ffXaAdNFgFoCEdAtJIVckdFOXV9lChoBkdAcWv3nIQvpWgHTTsBaAhHQLSS+mgam411fZQoaAZHQG4sYDklu3toB00wAWgIR0C0k3QIdELIdX2UKGgGR0Bvje7UXpGGaAdNWgFoCEdAtJP/gIhQnHV9lChoBkdAbFDYLb5/LGgHTSABaAhHQLSU1LJjlPt1fZQoaAZHQHF8btzCDVZoB0v6aAhHQLSVM5Qxesx1fZQoaAZHQG/IQVbiZOVoB00RAWgIR0C0laOMdcSodX2UKGgGR0AkhyksSTQmaAdLomgIR0C0leShJyyVdX2UKGgGR0Bwwbm9xp+MaAdNNQFoCEdAtJbDSMLncXV9lChoBkdAcExSUC7sfWgHTVoBaAhHQLSXTZ9NN8F1fZQoaAZHQHANyflIVdpoB00nAWgIR0C0l8VjmSyMdX2UKGgGR0BuSYcYIjW1aAdNawFoCEdAtJhUd1dPcnV9lChoBkdAcFQ0Mw1zhmgHTWABaAhHQLSZRFCswL51fZQoaAZHQG6msSCe2/loB01HAWgIR0C0mcgo5PuYdX2UKGgGR0Bvcbj5sTFmaAdNEAFoCEdAtJpc4Ia99XV9lChoBkdAcdDinpB5X2gHTT0BaAhHQLSbiFGXokl1fZQoaAZHQHIW2GM4tHxoB00PAWgIR0C0nCFXeWOZdX2UKGgGR0BwPMR8MNMHaAdNKQFoCEdAtJzERGtp23V9lChoBkdAcQT7+kxh2GgHTW8BaAhHQLSdwq1w5vN1fZQoaAZHQG7dfY8Md95oB00vAWgIR0C0njoo3JgcdX2UKGgGR8AsYBUaQ3glaAdLvWgIR0C0noRAbADadX2UKGgGR0Bt0XUONHYpaAdNJwFoCEdAtJ75MBZIQXV9lChoBkdAb+qtrbg0j2gHTTwBaAhHQLSf3mgam411fZQoaAZHQG+V8J2MbWFoB01jAWgIR0C0oGwfp2U0dX2UKGgGR0Akpudf9gndaAdLsGgIR0C0oLSXD3uedWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
80
  "n_steps": 1024,
81
  "gamma": 0.995,
82
  "gae_lambda": 0.98,
83
+ "ent_coef": 0.0001,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
  "n_epochs": 5,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-lunar-lander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7e7cfb079a73fe51a1402ca0fe8c382be31c2a2fe07ebdc08c831c4947d36cb
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ec7196a24fdee973ea3828c5defd99ee8509836e376e9d891c3dbef57e3972e
3
  size 88362
ppo-lunar-lander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:488fcc73abfd01187156893e6b8ae77377635bac4852d318cd36beabc05702c4
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42544e9f6e73f967d0ee36169f931f4520a5033e6b2dc7e0166ee36b6e5620ad
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 240.31185197008594, "std_reward": 69.19105987754293, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-21T07:52:15.311836"}
 
1
+ {"mean_reward": 264.50884393212345, "std_reward": 16.465455928459814, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-24T14:19:22.109201"}