Update README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,7 @@ tags:
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
@@ -19,19 +20,54 @@ model-index:
|
|
19 |
value: 240.31 +/- 69.19
|
20 |
name: mean_reward
|
21 |
verified: false
|
|
|
|
|
|
|
22 |
---
|
23 |
|
24 |
# **PPO** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
|
|
|
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
29 |
-
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
from stable_baselines3 import
|
34 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
+
- gymnasium
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
|
|
20 |
value: 240.31 +/- 69.19
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
+
language:
|
24 |
+
- en
|
25 |
+
pipeline_tag: reinforcement-learning
|
26 |
---
|
27 |
|
28 |
# **PPO** Agent playing **LunarLander-v2**
|
29 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
30 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
31 |
+
|
32 |
+
This model is trained with the help of [Deep RL Course by HuggingFace](https://huggingface.co/learn/deep-rl-course/unit0/introduction)
|
33 |
|
34 |
## Usage (with Stable-baselines3)
|
35 |
+
```python
|
36 |
+
# necessary libraries
|
37 |
+
import gymnasium as gym
|
38 |
|
39 |
+
from huggingface_sb3 import load_from_hub, package_to_hub
|
40 |
+
from huggingface_hub import (
|
41 |
+
notebook_login,
|
42 |
+
)
|
43 |
|
44 |
+
from stable_baselines3 import PPO
|
45 |
+
from stable_baselines3.common.env_util import make_vec_env
|
46 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
47 |
+
from stable_baselines3.common.monitor import Monitor
|
48 |
+
|
49 |
+
# Step 1 : Create an environment
|
50 |
+
env = gym.make("LunarLander-v2")
|
51 |
+
observation,info = env.reset() # initialize the environment
|
52 |
+
|
53 |
+
# Step 2 : Create the model
|
54 |
+
model = PPO(
|
55 |
+
policy = "MlpPolicy", # Multiple Layer Perceptron Policy
|
56 |
+
env = env,
|
57 |
+
n_steps = 1024,
|
58 |
+
batch_size = 64,
|
59 |
+
n_epochs = 5,
|
60 |
+
gamma = 0.995, # discount factor
|
61 |
+
gae_lambda = 0.98, # close to 1 - more bias and less variance
|
62 |
+
ent_coef = 0.01, # exploration exploitation tradeoff
|
63 |
+
verbose = 1
|
64 |
+
)
|
65 |
+
|
66 |
+
# Step 3 : Train the model
|
67 |
+
model.learn(total_timesteps=2000000,progress_bar = True)
|
68 |
|
69 |
+
# Step 4 : Evaluation
|
70 |
+
eval_env = Monitor(gym.make("LunarLander-v2"))
|
71 |
+
mean_reward,std_reward = evaluate_policy(model,eval_env,n_eval_episodes = 10 ,deterministic=True)
|
72 |
+
print(f"Mean reward : {mean_reward} +/- {std_reward}")
|
73 |
+
```
|