metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-imdb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test[6250:12500]+test[-12500:-6250]
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.93024
- name: F1
type: f1
value: 0.9302304818748904
- name: Precision
type: precision
value: 0.93047490567909
- name: Recall
type: recall
value: 0.93024
distilbert-imdb
This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set:
- Loss: 0.2118
- Accuracy: 0.9302
- F1: 0.9302
- Precision: 0.9305
- Recall: 0.9302
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 9072
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.2803 | 1.0 | 782 | 0.1874 | 0.9276 | 0.9276 | 0.9276 | 0.9276 |
0.1143 | 2.0 | 1564 | 0.2118 | 0.9302 | 0.9302 | 0.9305 | 0.9302 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2