roberta-base-wnli / README.md
Jeremiah Zhou
update model card README.md
32ca8b6
|
raw
history blame
2.17 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: roberta-base-wnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5633802816901409

roberta-base-wnli

This model is a fine-tuned version of roberta-base on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6849
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 0.6849 0.5634
No log 2.0 80 0.6912 0.5634
No log 3.0 120 0.6918 0.5634
No log 4.0 160 0.6964 0.4366
No log 5.0 200 0.6928 0.5634
No log 6.0 240 0.7005 0.4366
No log 7.0 280 0.6964 0.3099
No log 8.0 320 0.6986 0.3521
No log 9.0 360 0.6969 0.5493
No log 10.0 400 0.6976 0.5634

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1