Edit model card

scam-alert-bert

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1215
  • Accuracy: 0.9861
  • F1: 0.9861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.1577 100 0.0723 0.9841 0.9841
No log 0.3155 200 0.0520 0.9900 0.9899
No log 0.4732 300 0.0825 0.9821 0.9823
No log 0.6309 400 0.0722 0.9861 0.9857
No log 0.7886 500 0.0521 0.9861 0.9859
No log 0.9464 600 0.0905 0.9761 0.9765
No log 1.1041 700 0.0675 0.9821 0.9822
No log 1.2618 800 0.0661 0.9900 0.9899
No log 1.4196 900 0.0695 0.9861 0.9861
No log 1.5773 1000 0.0780 0.9880 0.9880
No log 1.7350 1100 0.0877 0.9861 0.9858
No log 1.8927 1200 0.0714 0.9880 0.9880
No log 2.0505 1300 0.0856 0.9841 0.9841
No log 2.2082 1400 0.0930 0.9841 0.9842
No log 2.3659 1500 0.0886 0.9861 0.9860
No log 2.5237 1600 0.0982 0.9861 0.9861
No log 2.6814 1700 0.0854 0.9861 0.9860
No log 2.8391 1800 0.0949 0.9861 0.9860
No log 2.9968 1900 0.0935 0.9880 0.9880
No log 3.1546 2000 0.1004 0.9861 0.9860
No log 3.3123 2100 0.1223 0.9801 0.9803
No log 3.4700 2200 0.1146 0.9861 0.9861
No log 3.6278 2300 0.1148 0.9861 0.9861
No log 3.7855 2400 0.1074 0.9861 0.9860
No log 3.9432 2500 0.1082 0.9861 0.9860
0.0249 4.1009 2600 0.1272 0.9841 0.9842
0.0249 4.2587 2700 0.1264 0.9841 0.9842
0.0249 4.4164 2800 0.1161 0.9861 0.9861
0.0249 4.5741 2900 0.1242 0.9861 0.9861
0.0249 4.7319 3000 0.1227 0.9861 0.9861
0.0249 4.8896 3100 0.1223 0.9861 0.9861
0.0249 5.0473 3200 0.1207 0.9861 0.9861
0.0249 5.2050 3300 0.1210 0.9861 0.9861
0.0249 5.3628 3400 0.1214 0.9861 0.9861
0.0249 5.5205 3500 0.1214 0.9861 0.9861
0.0249 5.6782 3600 0.1215 0.9861 0.9861
0.0249 5.8360 3700 0.1215 0.9861 0.9861
0.0249 5.9937 3800 0.1215 0.9861 0.9861

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JeswinMS4/scam-alert-bert

Finetuned
(6760)
this model