metadata
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- princeton-nlp/llama3-ultrafeedback-armorm
model-index:
- name: llama-3-8b-instruct-gapo-v2-bert-f1-beta10-gamma0.3-lr1.0e-6-1minus-rerun
results: []
llama-3-8b-instruct-gapo-v2-bert-f1-beta10-gamma0.3-lr1.0e-6-1minus-rerun
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set:
- Loss: 1.3036
- Rewards/chosen: -16.3155
- Rewards/rejected: -21.8422
- Rewards/accuracies: 0.8313
- Rewards/margins: 5.5267
- Logps/rejected: -2.1842
- Logps/chosen: -1.6315
- Logits/rejected: -1.4149
- Logits/chosen: -1.4050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
1.2352 | 0.8550 | 400 | 1.3036 | -16.3155 | -21.8422 | 0.8313 | 5.5267 | -2.1842 | -1.6315 | -1.4149 | -1.4050 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0
- Datasets 2.21.0
- Tokenizers 0.19.1