|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: google/mt5-base
|
|
tags:
|
|
- summarization
|
|
- generated_from_trainer
|
|
metrics:
|
|
- rouge
|
|
model-index:
|
|
- name: mt5-finetuned-summarize
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# mt5-finetuned-summarize
|
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.2613
|
|
- Rouge1: 2.1127
|
|
- Rouge2: 0.0
|
|
- Rougel: 2.1127
|
|
- Rougelsum: 2.1127
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5.6e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 8
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
|
| 5.8246 | 1.0 | 159 | 1.4914 | 2.1127 | 0.0 | 2.1127 | 2.1127 |
|
|
| 1.4676 | 2.0 | 318 | 0.4395 | 1.6432 | 0.0 | 1.8779 | 1.8779 |
|
|
| 0.6332 | 3.0 | 477 | 0.3840 | 1.6432 | 0.0 | 1.8779 | 1.8779 |
|
|
| 0.4717 | 4.0 | 636 | 0.3274 | 1.6432 | 0.0 | 1.8779 | 1.8779 |
|
|
| 0.3878 | 5.0 | 795 | 0.3058 | 2.1127 | 0.0 | 2.1127 | 2.1127 |
|
|
| 0.3826 | 6.0 | 954 | 0.2466 | 2.1127 | 0.0 | 2.1127 | 2.1127 |
|
|
| 0.3243 | 7.0 | 1113 | 0.2535 | 2.1127 | 0.0 | 2.1127 | 2.1127 |
|
|
| 0.2976 | 8.0 | 1272 | 0.2613 | 2.1127 | 0.0 | 2.1127 | 2.1127 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.47.1
|
|
- Pytorch 2.5.1+cu121
|
|
- Datasets 3.2.0
|
|
- Tokenizers 0.21.0
|
|
|