whisper-small-zh_tw / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
a2d7964
|
raw
history blame
2.17 kB
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: 'Whisper Small Chinese (Taiwan) '
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 zh-TW
          type: mozilla-foundation/common_voice_11_0
          config: zh-TW
          split: test
          args: zh-TW
        metrics:
          - type: wer
            value: 41.96519959058342
            name: Wer

Whisper Small Chinese (Taiwan)

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 zh-TW dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2283
  • Wer: 41.9652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0049 6.02 1000 0.2283 41.9652
0.0008 13.02 2000 0.2556 42.0266
0.0004 20.01 3000 0.2690 42.4156
0.0003 27.0 4000 0.2788 42.7840
0.0002 33.02 5000 0.2826 43.0297

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2