t5-summarization / README.md
JohnDoe70's picture
Training complete with full dataset
8d4e1fc verified
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-question-answer-summarization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-question-answer-summarization
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1420
- Rouge1: 87.2659
- Rouge2: 79.1621
- Rougel: 84.0716
- Rougelsum: 84.0332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.3593 | 1.0 | 450 | 0.1339 | 87.0068 | 78.4882 | 83.5134 | 83.4528 |
| 0.121 | 2.0 | 900 | 0.1273 | 87.3363 | 79.1644 | 83.7472 | 83.7456 |
| 0.0982 | 3.0 | 1350 | 0.1314 | 87.0066 | 78.3475 | 83.0262 | 82.9739 |
| 0.084 | 4.0 | 1800 | 0.1322 | 87.1678 | 78.7514 | 83.4642 | 83.441 |
| 0.074 | 5.0 | 2250 | 0.1345 | 87.2618 | 79.114 | 83.9859 | 83.9444 |
| 0.0685 | 6.0 | 2700 | 0.1378 | 87.1497 | 79.0628 | 83.958 | 83.9482 |
| 0.0609 | 7.0 | 3150 | 0.1419 | 86.993 | 78.781 | 83.8076 | 83.7681 |
| 0.0591 | 8.0 | 3600 | 0.1420 | 87.2659 | 79.1621 | 84.0716 | 84.0332 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2