chinese-text-emotion-classifier
Here's a model is fine-tuned based on another base model and features a smaller parameter size. For users who require faster inference speed, this model is a suitable choice.The actual performance test results are also not much different. Model:Chinese-Emotion-Small
此模型是基於另一個基座模型所調整的結果,擁有較小的參數規模。對於有推理速度需求的使用者,可以選擇此模型以達到更快速的性能表現,實際測試性能也相差不大。 模型:Chinese-Emotion-Small
📚 Model Introduction
This model is fine-tuned based on the joeddav/xlm-roberta-large-xnli model, specializing in Chinese text emotion analysis.
Through fine-tuning, the model can identify the following 8 emotion labels:
- Neutral tone
- Concerned tone
- Happy tone
- Angry tone
- Sad tone
- Questioning tone
- Surprised tone
- Disgusted tone
The model is applicable to various scenarios, such as customer service emotion monitoring, social media analysis, and user feedback classification.
📚 模型簡介
本模型基於joeddav/xlm-roberta-large-xnli 模型進行微調,專注於 中文語句情感分析。
通過微調,模型可以識別以下 8 種情緒標籤:
- 平淡語氣
- 關切語調
- 開心語調
- 憤怒語調
- 悲傷語調
- 疑問語調
- 驚奇語調
- 厭惡語調
該模型適用於多種場景,例如客服情緒監控、社交媒體分析以及用戶反饋分類。
🚀 Quick Start
Install Dependencies
Ensure that you have installed Hugging Face's Transformers library and PyTorch:
pip install transformers torch
###Load the Model Use the following code to load the model and tokenizer, and perform emotion classification:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 添加設備設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 標籤映射字典
label_mapping = {
0: "平淡語氣",
1: "關切語調",
2: "開心語調",
3: "憤怒語調",
4: "悲傷語調",
5: "疑問語調",
6: "驚奇語調",
7: "厭惡語調"
}
def predict_emotion(text, model_path="Johnson8187/Chinese-Emotion"):
# 載入模型和分詞器
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) # 移動模型到設備
# 將文本轉換為模型輸入格式
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # 移動輸入到設備
# 進行預測
with torch.no_grad():
outputs = model(**inputs)
# 取得預測結果
predicted_class = torch.argmax(outputs.logits).item()
predicted_emotion = label_mapping[predicted_class]
return predicted_emotion
if __name__ == "__main__":
# 使用範例
test_texts = [
"雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。",
"你說的那些話真的讓我很困惑,完全不知道該怎麼反應。",
"這世界真的是無情,為什麼每次都要給我這樣的考驗?",
"有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。",
"每次想起那段過去,我的心還是會痛,真的無法釋懷。",
"我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。",
"我完全沒想到你會這麼做,這讓我驚訝到無法言喻。",
"我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。"
]
for text in test_texts:
emotion = predict_emotion(text)
print(f"文本: {text}")
print(f"預測情緒: {emotion}\n")
🚀 快速開始
安裝依賴
請確保安裝了 Hugging Face 的 Transformers 庫和 PyTorch:
pip install transformers torch
加載模型
使用以下代碼加載模型和分詞器,並進行情感分類:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 添加設備設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 標籤映射字典
label_mapping = {
0: "平淡語氣",
1: "關切語調",
2: "開心語調",
3: "憤怒語調",
4: "悲傷語調",
5: "疑問語調",
6: "驚奇語調",
7: "厭惡語調"
}
def predict_emotion(text, model_path="Johnson8187/Chinese-Emotion"):
# 載入模型和分詞器
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device) # 移動模型到設備
# 將文本轉換為模型輸入格式
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # 移動輸入到設備
# 進行預測
with torch.no_grad():
outputs = model(**inputs)
# 取得預測結果
predicted_class = torch.argmax(outputs.logits).item()
predicted_emotion = label_mapping[predicted_class]
return predicted_emotion
if __name__ == "__main__":
# 使用範例
test_texts = [
"雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。",
"你說的那些話真的讓我很困惑,完全不知道該怎麼反應。",
"這世界真的是無情,為什麼每次都要給我這樣的考驗?",
"有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。",
"每次想起那段過去,我的心還是會痛,真的無法釋懷。",
"我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。",
"我完全沒想到你會這麼做,這讓我驚訝到無法言喻。",
"我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。"
]
for text in test_texts:
emotion = predict_emotion(text)
print(f"文本: {text}")
print(f"預測情緒: {emotion}\n")
Dataset
- The fine-tuning dataset consists of 4,000 annotated Traditional Chinese emotion samples, covering various emotion categories to ensure the model's generalization capability in emotion classification.
- Johnson8187/Chinese_Multi-Emotion_Dialogue_Dataset
數據集
- 微調數據來自4000個自行標註的高質量繁體中文情感語句數據,覆蓋了多種情緒類別,確保模型在情感分類上的泛化能力。
- Johnson8187/Chinese_Multi-Emotion_Dialogue_Dataset
🌟 Contact and Feedback If you encounter any issues while using this model, please contact:
Email: fable8043@gmail.com Hugging Face Project Page: chinese-text-emotion-classifier
🌟 聯繫與反饋
如果您在使用該模型時有任何問題,請聯繫:
- 郵箱:
fable8043@gmail.com
- Hugging Face 項目頁面:chinese-text-emotion-classifier
- Downloads last month
- 13,172