JorgeGIT's picture
Model save
aab16b4
metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-Leukemia-cell
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9849624060150376

finetuned-Leukemia-cell

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1128
  • Accuracy: 0.9850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3182 2.94 100 0.2301 0.9211
0.2223 5.88 200 0.3411 0.8910
0.1695 8.82 300 0.1168 0.9624
0.0579 11.76 400 0.1632 0.9511
0.1184 14.71 500 0.4665 0.8346
0.0575 17.65 600 0.1563 0.9586
0.1087 20.59 700 0.2023 0.9511
0.1164 23.53 800 0.2283 0.9398
0.1144 26.47 900 0.1130 0.9624
0.1821 29.41 1000 0.1155 0.9737
0.0882 32.35 1100 0.0760 0.9850
0.1099 35.29 1200 0.0894 0.9737
0.053 38.24 1300 0.1248 0.9699
0.0489 41.18 1400 0.1081 0.9774
0.065 44.12 1500 0.1694 0.9549
0.037 47.06 1600 0.1060 0.9699
0.0281 50.0 1700 0.0892 0.9737
0.0394 52.94 1800 0.1680 0.9624
0.0828 55.88 1900 0.1404 0.9774
0.0663 58.82 2000 0.1683 0.9662
0.0698 61.76 2100 0.1517 0.9624
0.0938 64.71 2200 0.1031 0.9737
0.0324 67.65 2300 0.1251 0.9812
0.0713 70.59 2400 0.1597 0.9662
0.059 73.53 2500 0.1455 0.9699
0.0404 76.47 2600 0.0924 0.9624
0.0526 79.41 2700 0.0853 0.9812
0.0439 82.35 2800 0.0815 0.9850
0.0485 85.29 2900 0.1192 0.9774
0.0498 88.24 3000 0.0958 0.9737
0.0181 91.18 3100 0.1351 0.9699
0.0226 94.12 3200 0.1458 0.9774
0.1115 97.06 3300 0.1453 0.9737
0.0349 100.0 3400 0.1257 0.9812
0.0246 102.94 3500 0.1405 0.9662
0.0084 105.88 3600 0.0666 0.9887
0.0174 108.82 3700 0.1419 0.9662
0.0432 111.76 3800 0.2027 0.9662
0.0164 114.71 3900 0.0671 0.9812
0.0223 117.65 4000 0.0722 0.9850
0.012 120.59 4100 0.1285 0.9699
0.0143 123.53 4200 0.1102 0.9812
0.0254 126.47 4300 0.1139 0.9812
0.018 129.41 4400 0.1056 0.9737
0.0011 132.35 4500 0.1097 0.9774
0.08 135.29 4600 0.1425 0.9662
0.0292 138.24 4700 0.0871 0.9812
0.0248 141.18 4800 0.1082 0.9699
0.0064 144.12 4900 0.0644 0.9850
0.0115 147.06 5000 0.0912 0.9812
0.052 150.0 5100 0.0927 0.9850
0.0103 152.94 5200 0.1129 0.9774
0.0185 155.88 5300 0.1250 0.9699
0.0185 158.82 5400 0.1226 0.9737
0.0002 161.76 5500 0.1146 0.9812
0.0249 164.71 5600 0.1945 0.9737
0.0165 167.65 5700 0.1875 0.9586
0.0028 170.59 5800 0.1045 0.9774
0.0044 173.53 5900 0.1279 0.9774
0.0078 176.47 6000 0.0967 0.9774
0.0093 179.41 6100 0.1450 0.9812
0.0261 182.35 6200 0.0815 0.9850
0.0218 185.29 6300 0.1586 0.9699
0.1184 188.24 6400 0.1481 0.9812
0.0011 191.18 6500 0.1698 0.9737
0.0131 194.12 6600 0.2247 0.9662
0.0156 197.06 6700 0.1205 0.9812
0.007 200.0 6800 0.1864 0.9699
0.015 202.94 6900 0.1684 0.9774
0.0032 205.88 7000 0.0835 0.9850
0.0017 208.82 7100 0.1174 0.9812
0.0397 211.76 7200 0.1926 0.9662
0.0015 214.71 7300 0.1646 0.9699
0.0046 217.65 7400 0.1520 0.9774
0.0193 220.59 7500 0.1436 0.9812
0.0474 223.53 7600 0.1747 0.9737
0.001 226.47 7700 0.1647 0.9812
0.0005 229.41 7800 0.1992 0.9699
0.0119 232.35 7900 0.1545 0.9699
0.0153 235.29 8000 0.2018 0.9662
0.0106 238.24 8100 0.1798 0.9774
0.0012 241.18 8200 0.1896 0.9774
0.0 244.12 8300 0.1500 0.9812
0.0339 247.06 8400 0.1890 0.9662
0.0016 250.0 8500 0.1410 0.9812
0.0003 252.94 8600 0.1341 0.9812
0.001 255.88 8700 0.1209 0.9850
0.0071 258.82 8800 0.1191 0.9812
0.0 261.76 8900 0.0960 0.9887
0.0016 264.71 9000 0.1063 0.9850
0.0048 267.65 9100 0.1583 0.9737
0.0026 270.59 9200 0.1473 0.9774
0.0006 273.53 9300 0.1325 0.9812
0.0226 276.47 9400 0.1214 0.9812
0.0075 279.41 9500 0.1399 0.9812
0.0047 282.35 9600 0.1291 0.9850
0.0 285.29 9700 0.1117 0.9812
0.0001 288.24 9800 0.1137 0.9850
0.0001 291.18 9900 0.1117 0.9850
0.0 294.12 10000 0.1061 0.9850
0.0 297.06 10100 0.1129 0.9850
0.0057 300.0 10200 0.1128 0.9850

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0