File size: 1,976 Bytes
71ae6c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# Definição do Dataset
class SimpleDataset(Dataset):
def __init__(self, num_samples, seq_length, input_dim):
self.num_samples = num_samples
self.seq_length = seq_length
self.input_dim = input_dim
self.data = torch.randn(num_samples, seq_length, input_dim)
self.labels = torch.randint(0, 2, (num_samples, seq_length, 50))
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
# Definição do modelo (usando TransNAR do exemplo anterior)
class TransNAR(nn.Module):
# ... Definição do modelo como no exemplo anterior ...
# Inicializar o modelo, critério e otimizador
input_dim = 100
output_dim = 50
embed_dim = 256
num_heads = 8
num_layers = 6
ffn_dim = 1024
model = TransNAR(input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
# Criar o DataLoader
num_samples = 1000
seq_length = 100
batch_size = 32
dataset = SimpleDataset(num_samples, seq_length, input_dim)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Loop de treinamento
num_epochs = 10
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, labels in dataloader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataset)
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}')
|