TransNAR / mat_lit_dataset.py
JoseRFJunior's picture
Upload 8 files
71ae6c3 verified
import torch
from torch.utils.data import Dataset
from transformers import AutoTokenizer
class TransNARTextDataset(Dataset):
def __init__(self, data_type, num_samples, max_length, vocab_size, device):
self.data_type = data_type
self.num_samples = num_samples
self.max_length = max_length
self.vocab_size = vocab_size
self.device = device
# Carregar o tokenizador pré-treinado
if data_type == 'math':
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
elif data_type == 'literature':
self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
else:
raise ValueError("data_type must be 'math' or 'literature'")
# Gerar dados de entrada e labels
self.input_ids, self.attention_masks, self.labels = self.generate_data()
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return self.input_ids[idx], self.attention_masks[idx], self.labels[idx]
def generate_data(self):
input_ids = []
attention_masks = []
labels = []
for _ in range(self.num_samples):
if self.data_type == 'math':
text = self.generate_math_text()
else:
text = self.generate_literature_text()
# Tokenizar o texto
encoded = self.tokenizer.encode_plus(
text,
max_length=self.max_length,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt',
)
input_ids.append(encoded['input_ids'])
attention_masks.append(encoded['attention_mask'])
labels.append(self.generate_label(text))
return torch.stack(input_ids).to(self.device), \
torch.stack(attention_masks).to(self.device), \
torch.stack(labels).to(self.device)
def generate_math_text(self):
# Gera texto matemático sintético
pass
def generate_literature_text(self):
# Gera texto de literatura sintético
pass
def generate_label(self, text):
# Gera label para o texto
pass