JoshEe00's picture
End of training
6bad00f verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-minds14-en_US-test-finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.26380766731643923

whisper-tiny-minds14-en_US-test-finetuned

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0871
  • Wer Ortho: 26.8342
  • Wer: 0.2638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0021 17.86 500 0.7863 26.6304 0.2534
0.0002 35.71 1000 0.8689 26.7663 0.2612
0.0001 53.57 1500 0.9230 27.2418 0.2664
0.0001 71.43 2000 0.9637 27.1739 0.2664
0.0 89.29 2500 0.9977 26.9022 0.2638
0.0 107.14 3000 1.0277 27.1739 0.2664
0.0 125.0 3500 1.0571 27.1739 0.2671
0.0 142.86 4000 1.0871 26.8342 0.2638

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2