bert-finetuned-ner / README.md
JoshuaAAX's picture
Training complete
1d56e01 verified
|
raw
history blame
1.7 kB
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1564
- Precision: 0.75
- Recall: 0.8045
- F1: 0.7763
- Accuracy: 0.9682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0439 | 1.0 | 1041 | 0.1419 | 0.7464 | 0.7918 | 0.7684 | 0.9674 |
| 0.0458 | 2.0 | 2082 | 0.1414 | 0.7493 | 0.8028 | 0.7752 | 0.9677 |
| 0.0261 | 3.0 | 3123 | 0.1564 | 0.75 | 0.8045 | 0.7763 | 0.9682 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1