quickdraw-ViT-base-finetune / trainer_state.json
JoshuaKelleyDs's picture
uno
d318645 verified
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 5.0,
"eval_steps": 5000,
"global_step": 43950,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.11376564277588168,
"grad_norm": 21.099435806274414,
"learning_rate": 7.984000000000001e-05,
"loss": 4.3757,
"step": 1000
},
{
"epoch": 0.22753128555176336,
"grad_norm": 6.149295330047607,
"learning_rate": 0.00015984000000000001,
"loss": 2.2482,
"step": 2000
},
{
"epoch": 0.3412969283276451,
"grad_norm": 3.9191203117370605,
"learning_rate": 0.00023984,
"loss": 1.6084,
"step": 3000
},
{
"epoch": 0.4550625711035267,
"grad_norm": 2.940685987472534,
"learning_rate": 0.00031984,
"loss": 1.4021,
"step": 4000
},
{
"epoch": 0.5688282138794084,
"grad_norm": 2.688676118850708,
"learning_rate": 0.00039984000000000005,
"loss": 1.3104,
"step": 5000
},
{
"epoch": 0.5688282138794084,
"eval_accuracy": 0.682576,
"eval_loss": 1.2636802196502686,
"eval_runtime": 30.6933,
"eval_samples_per_second": 8145.096,
"eval_steps_per_second": 15.932,
"step": 5000
},
{
"epoch": 0.6825938566552902,
"grad_norm": 2.202869176864624,
"learning_rate": 0.00047984000000000004,
"loss": 1.2594,
"step": 6000
},
{
"epoch": 0.7963594994311718,
"grad_norm": 1.9557334184646606,
"learning_rate": 0.00055984,
"loss": 1.2241,
"step": 7000
},
{
"epoch": 0.9101251422070534,
"grad_norm": 1.6525850296020508,
"learning_rate": 0.00063984,
"loss": 1.197,
"step": 8000
},
{
"epoch": 1.023890784982935,
"grad_norm": 1.422629714012146,
"learning_rate": 0.0007197600000000001,
"loss": 1.1731,
"step": 9000
},
{
"epoch": 1.1376564277588168,
"grad_norm": 1.258188247680664,
"learning_rate": 0.00079976,
"loss": 1.1479,
"step": 10000
},
{
"epoch": 1.1376564277588168,
"eval_accuracy": 0.709628,
"eval_loss": 1.1420985460281372,
"eval_runtime": 30.2541,
"eval_samples_per_second": 8263.34,
"eval_steps_per_second": 16.163,
"step": 10000
},
{
"epoch": 1.2514220705346986,
"grad_norm": 1.3610972166061401,
"learning_rate": 0.0007765066273932253,
"loss": 1.1287,
"step": 11000
},
{
"epoch": 1.36518771331058,
"grad_norm": 1.2322840690612793,
"learning_rate": 0.0007529425625920472,
"loss": 1.0996,
"step": 12000
},
{
"epoch": 1.4789533560864618,
"grad_norm": 1.0880305767059326,
"learning_rate": 0.000729378497790869,
"loss": 1.0643,
"step": 13000
},
{
"epoch": 1.5927189988623436,
"grad_norm": 1.0738807916641235,
"learning_rate": 0.0007058379970544919,
"loss": 1.0453,
"step": 14000
},
{
"epoch": 1.7064846416382253,
"grad_norm": 0.9920330047607422,
"learning_rate": 0.0006822739322533137,
"loss": 1.0236,
"step": 15000
},
{
"epoch": 1.7064846416382253,
"eval_accuracy": 0.740376,
"eval_loss": 1.0128123760223389,
"eval_runtime": 30.6186,
"eval_samples_per_second": 8164.961,
"eval_steps_per_second": 15.971,
"step": 15000
},
{
"epoch": 1.820250284414107,
"grad_norm": 0.9682360291481018,
"learning_rate": 0.0006587098674521356,
"loss": 1.008,
"step": 16000
},
{
"epoch": 1.9340159271899886,
"grad_norm": 0.9743279814720154,
"learning_rate": 0.0006351458026509574,
"loss": 0.9879,
"step": 17000
},
{
"epoch": 2.04778156996587,
"grad_norm": 0.8997290134429932,
"learning_rate": 0.0006116288659793814,
"loss": 0.9578,
"step": 18000
},
{
"epoch": 2.161547212741752,
"grad_norm": 0.8797656297683716,
"learning_rate": 0.0005880648011782032,
"loss": 0.9252,
"step": 19000
},
{
"epoch": 2.2753128555176336,
"grad_norm": 0.8649430871009827,
"learning_rate": 0.000564500736377025,
"loss": 0.9206,
"step": 20000
},
{
"epoch": 2.2753128555176336,
"eval_accuracy": 0.757684,
"eval_loss": 0.9457069039344788,
"eval_runtime": 30.4556,
"eval_samples_per_second": 8208.682,
"eval_steps_per_second": 16.056,
"step": 20000
},
{
"epoch": 2.3890784982935154,
"grad_norm": 0.888418972492218,
"learning_rate": 0.0005409366715758468,
"loss": 0.9164,
"step": 21000
},
{
"epoch": 2.502844141069397,
"grad_norm": 0.8337541818618774,
"learning_rate": 0.0005173961708394698,
"loss": 0.9029,
"step": 22000
},
{
"epoch": 2.616609783845279,
"grad_norm": 0.8450725078582764,
"learning_rate": 0.0004938321060382916,
"loss": 0.9027,
"step": 23000
},
{
"epoch": 2.73037542662116,
"grad_norm": 0.8347210884094238,
"learning_rate": 0.00047029160530191456,
"loss": 0.8942,
"step": 24000
},
{
"epoch": 2.8441410693970424,
"grad_norm": 0.9702669382095337,
"learning_rate": 0.00044672754050073635,
"loss": 0.8878,
"step": 25000
},
{
"epoch": 2.8441410693970424,
"eval_accuracy": 0.765228,
"eval_loss": 0.9111341834068298,
"eval_runtime": 30.5593,
"eval_samples_per_second": 8180.815,
"eval_steps_per_second": 16.002,
"step": 25000
},
{
"epoch": 2.9579067121729237,
"grad_norm": 0.7944394946098328,
"learning_rate": 0.00042318703976435934,
"loss": 0.8766,
"step": 26000
},
{
"epoch": 3.0716723549488054,
"grad_norm": 0.750736653804779,
"learning_rate": 0.0003996465390279823,
"loss": 0.836,
"step": 27000
},
{
"epoch": 3.185437997724687,
"grad_norm": 0.907810628414154,
"learning_rate": 0.0003760824742268041,
"loss": 0.8147,
"step": 28000
},
{
"epoch": 3.299203640500569,
"grad_norm": 0.8858300447463989,
"learning_rate": 0.0003525184094256259,
"loss": 0.8098,
"step": 29000
},
{
"epoch": 3.4129692832764507,
"grad_norm": 0.8472805619239807,
"learning_rate": 0.0003289543446244477,
"loss": 0.8107,
"step": 30000
},
{
"epoch": 3.4129692832764507,
"eval_accuracy": 0.7749,
"eval_loss": 0.8753725290298462,
"eval_runtime": 30.6567,
"eval_samples_per_second": 8154.821,
"eval_steps_per_second": 15.951,
"step": 30000
},
{
"epoch": 3.526734926052332,
"grad_norm": 0.8683416843414307,
"learning_rate": 0.0003054138438880707,
"loss": 0.8104,
"step": 31000
},
{
"epoch": 3.640500568828214,
"grad_norm": 0.8718369007110596,
"learning_rate": 0.00028184977908689247,
"loss": 0.8076,
"step": 32000
},
{
"epoch": 3.7542662116040955,
"grad_norm": 0.7670469284057617,
"learning_rate": 0.00025830927835051546,
"loss": 0.7941,
"step": 33000
},
{
"epoch": 3.868031854379977,
"grad_norm": 0.7913306951522827,
"learning_rate": 0.00023474521354933727,
"loss": 0.7934,
"step": 34000
},
{
"epoch": 3.981797497155859,
"grad_norm": 0.8316972255706787,
"learning_rate": 0.00021120471281296026,
"loss": 0.7874,
"step": 35000
},
{
"epoch": 3.981797497155859,
"eval_accuracy": 0.782728,
"eval_loss": 0.8436186909675598,
"eval_runtime": 30.5157,
"eval_samples_per_second": 8192.491,
"eval_steps_per_second": 16.025,
"step": 35000
},
{
"epoch": 4.09556313993174,
"grad_norm": 0.8810792565345764,
"learning_rate": 0.00018766421207658322,
"loss": 0.7286,
"step": 36000
},
{
"epoch": 4.2093287827076225,
"grad_norm": 0.8747660517692566,
"learning_rate": 0.000164100147275405,
"loss": 0.7156,
"step": 37000
},
{
"epoch": 4.323094425483504,
"grad_norm": 0.8973079323768616,
"learning_rate": 0.0001405360824742268,
"loss": 0.7107,
"step": 38000
},
{
"epoch": 4.436860068259386,
"grad_norm": 0.8924602270126343,
"learning_rate": 0.00011697201767304862,
"loss": 0.7124,
"step": 39000
},
{
"epoch": 4.550625711035267,
"grad_norm": 0.8596675992012024,
"learning_rate": 9.343151693667158e-05,
"loss": 0.7064,
"step": 40000
},
{
"epoch": 4.550625711035267,
"eval_accuracy": 0.786888,
"eval_loss": 0.8359516263008118,
"eval_runtime": 30.4174,
"eval_samples_per_second": 8218.976,
"eval_steps_per_second": 16.076,
"step": 40000
},
{
"epoch": 4.664391353811149,
"grad_norm": 0.927306592464447,
"learning_rate": 6.986745213549337e-05,
"loss": 0.7033,
"step": 41000
},
{
"epoch": 4.778156996587031,
"grad_norm": 0.9652923941612244,
"learning_rate": 4.6326951399116346e-05,
"loss": 0.7012,
"step": 42000
},
{
"epoch": 4.891922639362912,
"grad_norm": 0.9106791019439697,
"learning_rate": 2.2762886597938146e-05,
"loss": 0.6982,
"step": 43000
},
{
"epoch": 5.0,
"step": 43950,
"total_flos": 5.7622608792e+17,
"train_loss": 1.0485419180287436,
"train_runtime": 8277.8936,
"train_samples_per_second": 2718.083,
"train_steps_per_second": 5.309
}
],
"logging_steps": 1000,
"max_steps": 43950,
"num_input_tokens_seen": 0,
"num_train_epochs": 5,
"save_steps": 5000,
"total_flos": 5.7622608792e+17,
"train_batch_size": 512,
"trial_name": null,
"trial_params": null
}