Model Card for Model ID
ModernBert version of CrossEncoders QNLI models. Used to determine if a passage contains the answer to a question. In this case the model has been train on GLUE.
Model Details
Model Description
This model is a fine-tuned version of answerdotai/ModernBERT-base on GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Accuracy Score: 0.9319
- F1 Score: 0.9322
Usage
Pre-trained models can be used like this:
from sentence_transformers import CrossEncoder
model = CrossEncoder('Jsevisal/CrossEncoder-ModernBERT-base-qnli')
scores = model.predict([('Query1', 'Paragraph1'), ('Query2', 'Paragraph2')])
#e.g.
scores = model.predict([('How many people live in Berlin?', 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'), ('What is the size of New York?', 'New York City is famous for the Metropolitan Museum of Art.')])
Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('Jsevisal/CrossEncoder-ModernBERT-base-qnli')
tokenizer = AutoTokenizer.from_pretrained('Jsevisal/CrossEncoder-ModernBERT-base-qnli')
features = tokenizer(['How many people live in Berlin?', 'What is the size of New York?'], ['Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = torch.nn.functional.sigmoid(model(**features).logits)
print(scores)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Jsevisal/CrossEncoder-ModernBERT-base-qnli
Base model
answerdotai/ModernBERT-base