openai/whisper-large-v2, all the parameters updated for 5 epochs
This model is a fine-tuned version of openai/whisper-large-v2 on the 2 hour dataset of SPGIspeech(custom dataset) dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 120
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.15.0
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Jungwonchang/whisper_large-v2-Full-SPGIspeech-xs
Base model
openai/whisper-large-v2Evaluation results
- WER on Test set for spgispeechtest set self-reported6.850
- CER on Test set for spgispeechtest set self-reported2.020