PyTorch
llama
alignment-handbook
Generated from Trainer
Mamba2InLlama_0_75 / README.md
JunxiongWang's picture
Update README.md
662b383 verified
metadata
base_model: JunxiongWang/llama3_0_75_mamba2_sft
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
  - HuggingFaceH4/orca_dpo_pairs
  - JunxiongWang/llama3-ultrafeedback-armorm
model-index:
  - name: JunxiongWang/Mamba2InLlama_0_75
    results: []

Please check here for details.

Visualize in Weights & Biases

JunxiongWang/Mamba2InLlama_0_75

This model is a fine-tuned version of JunxiongWang/llama3_0_75_mamba2_sft on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4695
  • Rewards/chosen: -1.5489
  • Rewards/rejected: -2.8730
  • Rewards/accuracies: 0.8107
  • Rewards/margins: 1.3240
  • Logps/rejected: -589.1575
  • Logps/chosen: -449.6615
  • Logits/rejected: 1.1678
  • Logits/chosen: 1.2259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.494 0.4798 2000 0.4938 -1.4838 -2.6084 0.7911 1.1246 -562.7021 -443.1515 1.1609 1.2167
0.4911 0.9597 4000 0.4695 -1.5489 -2.8730 0.8107 1.3240 -589.1575 -449.6615 1.1678 1.2259

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.1.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1

MambaInLlama

@article{junxiongdaniele2024mambainllama,
  title   = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
  author  = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
  journal = {arXiv preprint arXiv:2408.15237},
  year    = {2024}
}