BARTxiv / README.md
autoevaluator's picture
Add evaluation results on the 3.0.0 config and test split of cnn_dailymail
bd2b497
|
raw
history blame
4.8 kB
metadata
language: en
license: mit
library_name: transformers
tags:
  - summarization
  - bart
datasets: ccdv/arxiv-summarization
model-index:
  - name: BARTxiv
    results:
      - task:
          type: summarization
        dataset:
          name: arxiv-summarization
          type: ccdv/arxiv-summarization
          split: validation
        metrics:
          - type: rouge1
            value: 41.70204016592095
          - type: rouge2
            value: 15.134827404979639
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: cnn_dailymail
          type: cnn_dailymail
          config: 3.0.0
          split: test
        metrics:
          - type: rouge
            value: 42.6935
            name: ROUGE-1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjllYzUzNWNjZWQyMDdjNTYxYTFhNmM5MWZlNzljZWVmNTE0N2E1ZWQxNDUzZTkwNTY5OWY2YzViNDIyMDg3MiIsInZlcnNpb24iOjF9.ehl1eTGu4x9i_8rpVUvzqK6y89N0AvVHHUc_Z_A35TpR1_6hhxnxpB67RWaPd5cYhUKVvwryxHfaoLH0WHlfDg
          - type: rouge
            value: 19.9458
            name: ROUGE-2
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTdkODkyMjBlMGZlOTgzOTQ5OGE2ZmEzMjM3NDRiOTBlYzU0YTU5YmQzMDBmZTMwOWQ4Nzc3NGM4ZWZkODZhOCIsInZlcnNpb24iOjF9.ChzOw3oJ2CKdqnJr8GyRcpbhoMdmhvVelOEOZ9l9OoPS8dGF2dsZhz6pPmuIcVLuap6uPryFLJyM3s_doXEFCA
          - type: rouge
            value: 28.7611
            name: ROUGE-L
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzg2OGZjOWNlNjYyZTQxZjRkYTMzMjE4MGI4YjI2NTRjMTRmMDYyNjBkNzk2ODdlZjVhOWY1Zjc3OTAyMTk4MyIsInZlcnNpb24iOjF9.QUE_vKtGAnZf3Dd3cM9boIZba5DPLxUtQb8I5TQgwWy6pcJ8PKNvewR5uscU6aNmIY_gcfNtyE6c-7xIxHBFAQ
          - type: rouge
            value: 39.0496
            name: ROUGE-LSUM
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjdkM2E4YTYwMWU3MTRkMDc5ODI0N2JhMWU4ODdhZTY0NDg1ZDQxMjRiYzQ4Y2Q2Y2RmZmZjZGY1YzEwNmE0NyIsInZlcnNpb24iOjF9.OhIZWxf5COw52hqK-Kan73Tsr3C3lIXS72SRYNH9Ph81JxQ1D12QeSlN6JaAtFmOWLxs_xs60H0Icbo9-letDg
          - type: loss
            value: 2.429295539855957
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTI5MzUxMjNhODM3ZDQ4NDk3ZTgzYTQyYjBlZTExYzI3MmJjZjdhNjhkODMyMzA0M2Q5Nzk3MTViM2QxOGJkYSIsInZlcnNpb24iOjF9.2iOkGmRyyVxJdc9oQukeKWCxu0V-5zudxIg4msELcHvks3hQwHcO8QKSZ2A7Io_QC0F999maTIqCTvPcJTvxBQ
          - type: gen_len
            value: 97.3349
            name: gen_len
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjZiZmZkNzEyYTlhOGI3YWVlMjdjOWMzYWQ4YmU5ZjI0Yzk2NDE0OTkwYjFkNTNmMWM3MDk1OWU1ZDA0NTYyOCIsInZlcnNpb24iOjF9.oE6OwT5oO8xJak7HN4L0OHzmoaSghLZqiFy24KygS21jNVpbwXj793rV5RcPkJNWJb6agRktxXqtCZyxAzqMBw

BARTxiv

See the model implementation here.

This model is a fine-tuned version of facebook/bart-large-cnn on the arxiv-summarization dataset. It achieves the following results on the validation set:

  • Loss: 0.86
  • Rouge1: 41.70
  • Rouge2: 15.13
  • Rougel: 22.85
  • Rougelsum: 37.77

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-6
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adafactor
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.24 1.0 1073 1.24 38.32 12.80 20.55 34.50
1.04 2.0 2146 1.04 39.65 13.74 21.28 35.83
0.979 3.0 3219 0.98 40.19 14.30 21.87 36.38
0.970 4.0 4292 0.97 40.87 14.44 22.14 36.89
0.918 5.0 5365 0.92 41.17 14.94 22.54 37.40
0.901 6.0 6438 0.90 41.02 14.65 22.46 37.05
0.889 7.0 7511 0.89 41.32 15.09 22.64 37.42
0.900 8.0 8584 0 .90 41.23 15.02 22.67 37.28
0.869 9.0 9657 0.87 41.70 15.13 22.85 37.77

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1