metadata
language:
- ko
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- >-
KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
metrics:
- bleu
pipeline_tag: translation
widget:
- text: >-
translate_ko2en: IBM 왓슨X는 AI 및 데이터 플랫폼이다. 신뢰할 수 있는 데이터, 속도, 거버넌스를 갖고 파운데이션
모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를
제공한다.
example_title: Sample 1
- text: >-
translate_ko2en: 이용자는 신뢰할 수 있고 개방된 환경에서 자신의 데이터에 대해 자체적인 AI를 구축하거나, 시장에
출시된 AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수
있다.
example_title: Sample 2
base_model: KETI-AIR/long-ke-t5-base
model-index:
- name: ko2en
results:
- task:
type: translation
name: Translation
dataset:
name: >-
KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
koen,none,none,none,none
type: >-
KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
args: koen,none,none,none,none
metrics:
- type: bleu
value: 58.7008
name: Bleu
ko2en
This model is a fine-tuned version of KETI-AIR/long-ke-t5-base on the KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation koen,none,none,none,none dataset. It achieves the following results on the evaluation set:
- Loss: 0.5186
- Bleu: 58.7008
- Gen Len: 27.0073
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
0.6234 | 1.0 | 93762 | 0.5843 | 33.9843 | 17.5378 |
0.5334 | 2.0 | 187524 | 0.5369 | 35.3271 | 17.5388 |
0.4704 | 3.0 | 281286 | 0.5186 | 36.0533 | 17.5335 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.12.0
- Datasets 2.8.0
- Tokenizers 0.13.2