distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5940
- Accuracy: 0.86
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 11
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9604 | 1.0 | 113 | 1.8896 | 0.47 |
0.9921 | 2.0 | 226 | 1.1632 | 0.65 |
0.9314 | 3.0 | 339 | 0.9269 | 0.73 |
0.7916 | 4.0 | 452 | 0.7033 | 0.84 |
0.4223 | 5.0 | 565 | 0.6700 | 0.79 |
0.2548 | 6.0 | 678 | 0.6467 | 0.85 |
0.2854 | 7.0 | 791 | 0.6092 | 0.82 |
0.1582 | 8.0 | 904 | 0.6272 | 0.86 |
0.1024 | 9.0 | 1017 | 0.6225 | 0.82 |
0.0345 | 10.0 | 1130 | 0.6064 | 0.84 |
0.0671 | 11.0 | 1243 | 0.5940 | 0.86 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.