|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
Below is the reference code for inference. First load the tokenizer and the model. |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("KLGR123/WEPO-llama-3-8b", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("KLGR123/WEPO-llama-3-8b", trust_remote_code=True).to('cuda:0') |
|
``` |
|
|
|
Run a test-demo with random input. |
|
|
|
``` |
|
messages = [ |
|
{"role": "system", "content": "You are a web navigation intelligence who interacts with webpage environments to achieve human user intent."}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=128, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.2, |
|
top_p=0.9, |
|
) |
|
|
|
response = outputs[0][input_ids.shape[-1]:] |
|
output = tokenizer.decode(response, skip_special_tokens=True) |
|
output |
|
``` |