KSAIA's picture
Add new SentenceTransformer model
79c7ea0 verified
---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The consolidated financial statements and accompanying notes listed
in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere
in this Annual Report on Form 10-K.
sentences:
- What is the carrying value of the indefinite-lived intangible assets related to
the Certificate of Needs and Medicare licenses as of December 31, 2023?
- What sections of the Annual Report on Form 10-K contain the company's financial
statements?
- What was the effective tax rate excluding discrete net tax benefits for the year
2022?
- source_sentence: Consumers are served through Amazon's online and physical stores
with an emphasis on selection, price, and convenience.
sentences:
- What decision did the European Commission make on July 10, 2023 regarding the
United States?
- What are the primary offerings to consumers through Amazon's online and physical
stores?
- What activities are included in the services and other revenue segment of General
Motors Company?
- source_sentence: Visa has traditionally referred to their structure of facilitating
secure, reliable, and efficient money movement among consumers, issuing and acquiring
financial institutions, and merchants as the 'four-party' model.
sentences:
- What model does Visa traditionally refer to regarding their transaction process
among consumers, financial institutions, and merchants?
- What percentage of Meta's U.S. workforce in 2023 were represented by people with
disabilities, veterans, and members of the LGBTQ+ community?
- What are the revenue sources for the Company’s Health Care Benefits Segment?
- source_sentence: 'In addition to LinkedIn’s free services, LinkedIn offers monetized
solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions, and Sales
Solutions. Talent Solutions provide insights for workforce planning and tools
to hire, nurture, and develop talent. Talent Solutions also includes Learning
Solutions, which help businesses close critical skills gaps in times where companies
are having to do more with existing talent.'
sentences:
- What were the major factors contributing to the increased expenses excluding interest
for Investor Services and Advisor Services in 2023?
- What were the pre-tax earnings of the manufacturing sector in 2023, 2022, and
2021?
- What does LinkedIn's Talent Solutions include?
- source_sentence: Management assessed the effectiveness of the company’s internal
control over financial reporting as of December 31, 2023. In making this assessment,
we used the criteria set forth by the Committee of Sponsoring Organizations of
the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).
sentences:
- What criteria did Caterpillar Inc. use to assess the effectiveness of its internal
control over financial reporting as of December 31, 2023?
- What are the primary components of U.S. sales volumes for Ford?
- What was the percentage increase in Schwab's common stock dividend in 2022?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17199999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7999156431656791
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7659512471655326
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7695242771667452
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.797386886581973
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7617636054421769
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7649045947372368
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8142857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7920564966915744
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7587414965986392
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7625734940935677
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6657142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8042857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8414285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8785714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6657142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2680952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16828571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08785714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6657142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8042857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8414285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8785714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7736526290990251
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7397551020408162
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7440715957110537
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6428571428571429
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8171428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8585714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6428571428571429
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1634285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08585714285714285
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6428571428571429
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8171428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8585714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7521567222622648
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7178973922902494
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7227692954595494
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("KSAIA/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.8243 |
| cosine_accuracy@5 | 0.86 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.2748 |
| cosine_precision@5 | 0.172 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.8243 |
| cosine_recall@5 | 0.86 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.7999 |
| cosine_mrr@10 | 0.766 |
| **cosine_map@100** | **0.7695** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6857 |
| cosine_accuracy@3 | 0.82 |
| cosine_accuracy@5 | 0.8629 |
| cosine_accuracy@10 | 0.9086 |
| cosine_precision@1 | 0.6857 |
| cosine_precision@3 | 0.2733 |
| cosine_precision@5 | 0.1726 |
| cosine_precision@10 | 0.0909 |
| cosine_recall@1 | 0.6857 |
| cosine_recall@3 | 0.82 |
| cosine_recall@5 | 0.8629 |
| cosine_recall@10 | 0.9086 |
| cosine_ndcg@10 | 0.7974 |
| cosine_mrr@10 | 0.7618 |
| **cosine_map@100** | **0.7649** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6871 |
| cosine_accuracy@3 | 0.8143 |
| cosine_accuracy@5 | 0.8571 |
| cosine_accuracy@10 | 0.8957 |
| cosine_precision@1 | 0.6871 |
| cosine_precision@3 | 0.2714 |
| cosine_precision@5 | 0.1714 |
| cosine_precision@10 | 0.0896 |
| cosine_recall@1 | 0.6871 |
| cosine_recall@3 | 0.8143 |
| cosine_recall@5 | 0.8571 |
| cosine_recall@10 | 0.8957 |
| cosine_ndcg@10 | 0.7921 |
| cosine_mrr@10 | 0.7587 |
| **cosine_map@100** | **0.7626** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6657 |
| cosine_accuracy@3 | 0.8043 |
| cosine_accuracy@5 | 0.8414 |
| cosine_accuracy@10 | 0.8786 |
| cosine_precision@1 | 0.6657 |
| cosine_precision@3 | 0.2681 |
| cosine_precision@5 | 0.1683 |
| cosine_precision@10 | 0.0879 |
| cosine_recall@1 | 0.6657 |
| cosine_recall@3 | 0.8043 |
| cosine_recall@5 | 0.8414 |
| cosine_recall@10 | 0.8786 |
| cosine_ndcg@10 | 0.7737 |
| cosine_mrr@10 | 0.7398 |
| **cosine_map@100** | **0.7441** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6429 |
| cosine_accuracy@3 | 0.78 |
| cosine_accuracy@5 | 0.8171 |
| cosine_accuracy@10 | 0.8586 |
| cosine_precision@1 | 0.6429 |
| cosine_precision@3 | 0.26 |
| cosine_precision@5 | 0.1634 |
| cosine_precision@10 | 0.0859 |
| cosine_recall@1 | 0.6429 |
| cosine_recall@3 | 0.78 |
| cosine_recall@5 | 0.8171 |
| cosine_recall@10 | 0.8586 |
| cosine_ndcg@10 | 0.7522 |
| cosine_mrr@10 | 0.7179 |
| **cosine_map@100** | **0.7228** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 44.33 tokens</li><li>max: 289 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.43 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3).</code> | <code>What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?</code> |
| <code>In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes.</code> | <code>What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?</code> |
| <code>Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022.</code> | <code>How much did the marketing expenses increase in the year ended December 31, 2023?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122 | 10 | 1.5601 | - | - | - | - | - |
| 0.9746 | 12 | - | 0.7547 | 0.7546 | 0.7482 | 0.7281 | 0.6907 |
| 1.6244 | 20 | 0.6613 | - | - | - | - | - |
| 1.9492 | 24 | - | 0.7654 | 0.7625 | 0.7592 | 0.7423 | 0.7201 |
| 2.4365 | 30 | 0.4579 | - | - | - | - | - |
| 2.9239 | 36 | - | 0.7685 | 0.7640 | 0.7627 | 0.7445 | 0.7246 |
| 3.2487 | 40 | 0.3996 | - | - | - | - | - |
| **3.8985** | **48** | **-** | **0.7695** | **0.7649** | **0.7626** | **0.7441** | **0.7228** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.41.2
- PyTorch: 2.2.0a0+6a974be
- Accelerate: 0.27.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->