Edit model card

LegalBert_NoDuplicates_20Partition_5000WordsFrequency

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4410
  • Accuracy: 0.9049
  • F1 Macro: 0.8387
  • F1 Class 0: 0.9350
  • F1 Class 1: 0.6
  • F1 Class 2: 0.9290
  • F1 Class 3: 0.8000
  • F1 Class 4: 0.9014
  • F1 Class 5: 0.9388
  • F1 Class 6: 0.8119
  • F1 Class 7: 0.9317
  • F1 Class 8: 0.9804
  • F1 Class 9: 0.8595
  • F1 Class 10: 0.8834
  • F1 Class 11: 0.6087
  • F1 Class 12: 0.8280
  • F1 Class 13: 0.8333
  • F1 Class 14: 0.8808
  • F1 Class 15: 0.5588
  • F1 Class 16: 0.7273
  • F1 Class 17: 0.9799
  • F1 Class 18: 0.8440
  • F1 Class 19: 0.9412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Class 0 F1 Class 1 F1 Class 2 F1 Class 3 F1 Class 4 F1 Class 5 F1 Class 6 F1 Class 7 F1 Class 8 F1 Class 9 F1 Class 10 F1 Class 11 F1 Class 12 F1 Class 13 F1 Class 14 F1 Class 15 F1 Class 16 F1 Class 17 F1 Class 18 F1 Class 19
1.4309 0.44 250 0.9084 0.7836 0.5020 0.8895 0.0 0.8333 0.6111 0.5205 0.6966 0.4928 0.7551 0.8496 0.7397 0.8260 0.0 0.6420 0.0 0.5325 0.0 0.0 0.9700 0.6813 0.0
0.6988 0.88 500 0.5860 0.8602 0.6434 0.9078 0.0 0.8871 0.6829 0.7907 0.7835 0.7579 0.9091 0.9293 0.8421 0.8542 0.0 0.7524 0.3448 0.8243 0.0 0.0 0.9736 0.8000 0.8276
0.4866 1.33 750 0.5249 0.8765 0.7060 0.9189 0.0 0.8866 0.8511 0.8095 0.8269 0.8387 0.9375 0.9412 0.7883 0.8801 0.1538 0.7870 0.8085 0.8203 0.0976 0.0 0.9690 0.8348 0.9697
0.4198 1.77 1000 0.4760 0.8796 0.7172 0.9177 0.0 0.9137 0.8000 0.8406 0.7957 0.7957 0.9308 0.9524 0.7612 0.8718 0.2857 0.8012 0.8085 0.8344 0.2800 0.0 0.9799 0.8333 0.9412
0.3275 2.21 1250 0.4650 0.8867 0.7405 0.9221 0.0 0.9201 0.8000 0.8608 0.8421 0.8043 0.9367 0.9259 0.8372 0.8731 0.3478 0.8121 0.8085 0.8407 0.5312 0.0 0.9737 0.8333 0.9412
0.2874 2.65 1500 0.4662 0.8916 0.7792 0.9221 0.6 0.9160 0.8000 0.7879 0.8224 0.7959 0.9325 0.9804 0.8430 0.8896 0.5 0.7862 0.8085 0.8693 0.5634 0.0 0.9829 0.8421 0.9412
0.2563 3.1 1750 0.4427 0.8978 0.7627 0.9310 0.25 0.9272 0.8000 0.88 0.8515 0.8602 0.9383 0.9615 0.8438 0.8896 0.3333 0.8182 0.8085 0.8542 0.5574 0.0 0.9784 0.8302 0.9412
0.2206 3.54 2000 0.4378 0.8996 0.7920 0.9298 0.6 0.9251 0.8000 0.9067 0.8468 0.8200 0.9317 0.9804 0.8413 0.8913 0.5217 0.8208 0.8333 0.8571 0.5574 0.0 0.9829 0.8519 0.9412
0.1966 3.98 2250 0.4262 0.9031 0.8378 0.9361 0.6 0.9247 0.8000 0.9067 0.9143 0.8235 0.9317 0.9709 0.8739 0.8820 0.5714 0.8239 0.8571 0.8658 0.5846 0.7273 0.9784 0.8421 0.9412
0.1565 4.42 2500 0.4355 0.9075 0.8394 0.9390 0.6 0.9307 0.8000 0.9315 0.9184 0.8235 0.9317 0.9703 0.8889 0.8872 0.5833 0.8317 0.8085 0.8725 0.5758 0.7273 0.9829 0.8440 0.9412
0.149 4.87 2750 0.4410 0.9049 0.8387 0.9350 0.6 0.9290 0.8000 0.9014 0.9388 0.8119 0.9317 0.9804 0.8595 0.8834 0.6087 0.8280 0.8333 0.8808 0.5588 0.7273 0.9799 0.8440 0.9412

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kamer/LegalBert_NoDuplicates_20Partition_5000WordsFrequency

Finetuned
(39)
this model