metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.927455975191051
- name: Recall
type: recall
value: 0.9367938248126189
- name: F1
type: f1
value: 0.9321015138023151
- name: Accuracy
type: accuracy
value: 0.9835575960728867
distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0613
- Precision: 0.9275
- Recall: 0.9368
- F1: 0.9321
- Accuracy: 0.9836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2658 | 1.0 | 878 | 0.0728 | 0.8904 | 0.9161 | 0.9031 | 0.9778 |
0.0513 | 2.0 | 1756 | 0.0614 | 0.9251 | 0.9331 | 0.9291 | 0.9830 |
0.0317 | 3.0 | 2634 | 0.0613 | 0.9275 | 0.9368 | 0.9321 | 0.9836 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0