vit-fashion-mnist
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1755
- Accuracy: 0.9504
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6439 | 0.0267 | 100 | 0.6483 | 0.7925 |
0.3972 | 0.0533 | 200 | 0.4405 | 0.8598 |
0.4898 | 0.08 | 300 | 0.4771 | 0.8344 |
0.4585 | 0.1067 | 400 | 0.4260 | 0.8533 |
0.4513 | 0.1333 | 500 | 0.4276 | 0.8582 |
0.3669 | 0.16 | 600 | 0.3700 | 0.8728 |
0.3053 | 0.1867 | 700 | 0.3351 | 0.8878 |
0.3537 | 0.2133 | 800 | 0.3868 | 0.8632 |
0.3253 | 0.24 | 900 | 0.2819 | 0.9023 |
0.6373 | 0.2667 | 1000 | 0.4660 | 0.8436 |
0.3327 | 0.2933 | 1100 | 0.2756 | 0.9068 |
0.2778 | 0.32 | 1200 | 0.3304 | 0.8892 |
0.2734 | 0.3467 | 1300 | 0.3733 | 0.8688 |
0.3481 | 0.3733 | 1400 | 0.3195 | 0.892 |
0.194 | 0.4 | 1500 | 0.2794 | 0.9059 |
0.3727 | 0.4267 | 1600 | 0.3116 | 0.8932 |
0.379 | 0.4533 | 1700 | 0.2742 | 0.9016 |
0.2764 | 0.48 | 1800 | 0.3533 | 0.8782 |
0.2362 | 0.5067 | 1900 | 0.2735 | 0.9062 |
0.333 | 0.5333 | 2000 | 0.2844 | 0.9065 |
0.2024 | 0.56 | 2100 | 0.3169 | 0.8871 |
0.2167 | 0.5867 | 2200 | 0.2575 | 0.9097 |
0.2368 | 0.6133 | 2300 | 0.2612 | 0.9103 |
0.3344 | 0.64 | 2400 | 0.2549 | 0.91 |
0.168 | 0.6667 | 2500 | 0.2792 | 0.9076 |
0.2709 | 0.6933 | 2600 | 0.2769 | 0.9034 |
0.2131 | 0.72 | 2700 | 0.2900 | 0.895 |
0.2265 | 0.7467 | 2800 | 0.2394 | 0.9141 |
0.3461 | 0.7733 | 2900 | 0.3260 | 0.8868 |
0.3012 | 0.8 | 3000 | 0.4391 | 0.8687 |
0.2332 | 0.8267 | 3100 | 0.2320 | 0.9189 |
0.2458 | 0.8533 | 3200 | 0.2460 | 0.9148 |
0.3271 | 0.88 | 3300 | 0.2724 | 0.9031 |
0.1846 | 0.9067 | 3400 | 0.2359 | 0.9173 |
0.1764 | 0.9333 | 3500 | 0.2712 | 0.9035 |
0.1818 | 0.96 | 3600 | 0.2453 | 0.9152 |
0.1628 | 0.9867 | 3700 | 0.2307 | 0.9189 |
0.2072 | 1.0133 | 3800 | 0.2309 | 0.9207 |
0.182 | 1.04 | 3900 | 0.2980 | 0.9015 |
0.1572 | 1.0667 | 4000 | 0.2553 | 0.917 |
0.2 | 1.0933 | 4100 | 0.2203 | 0.9216 |
0.1475 | 1.12 | 4200 | 0.2635 | 0.91 |
0.2729 | 1.1467 | 4300 | 0.2382 | 0.9151 |
0.2978 | 1.1733 | 4400 | 0.2469 | 0.9157 |
0.2117 | 1.2 | 4500 | 0.2546 | 0.9104 |
0.2361 | 1.2267 | 4600 | 0.2434 | 0.9143 |
0.3054 | 1.2533 | 4700 | 0.2272 | 0.9193 |
0.1032 | 1.28 | 4800 | 0.2392 | 0.9172 |
0.1405 | 1.3067 | 4900 | 0.2269 | 0.9205 |
0.2779 | 1.3333 | 5000 | 0.2037 | 0.9293 |
0.2025 | 1.3600 | 5100 | 0.2238 | 0.9231 |
0.3432 | 1.3867 | 5200 | 0.2428 | 0.9139 |
0.1422 | 1.4133 | 5300 | 0.2443 | 0.9181 |
0.2444 | 1.44 | 5400 | 0.2395 | 0.919 |
0.1836 | 1.4667 | 5500 | 0.2089 | 0.9277 |
0.2308 | 1.4933 | 5600 | 0.2120 | 0.926 |
0.1877 | 1.52 | 5700 | 0.2000 | 0.9305 |
0.2019 | 1.5467 | 5800 | 0.2278 | 0.9229 |
0.2829 | 1.5733 | 5900 | 0.1935 | 0.9315 |
0.1262 | 1.6 | 6000 | 0.2274 | 0.92 |
0.1152 | 1.6267 | 6100 | 0.2849 | 0.9082 |
0.2012 | 1.6533 | 6200 | 0.2272 | 0.921 |
0.1806 | 1.6800 | 6300 | 0.1932 | 0.9324 |
0.1769 | 1.7067 | 6400 | 0.2020 | 0.9293 |
0.2793 | 1.7333 | 6500 | 0.2052 | 0.927 |
0.0894 | 1.76 | 6600 | 0.2147 | 0.9238 |
0.2441 | 1.7867 | 6700 | 0.2020 | 0.93 |
0.2366 | 1.8133 | 6800 | 0.2125 | 0.9264 |
0.1992 | 1.8400 | 6900 | 0.1930 | 0.9316 |
0.1936 | 1.8667 | 7000 | 0.2038 | 0.93 |
0.2093 | 1.8933 | 7100 | 0.2100 | 0.9321 |
0.2183 | 1.92 | 7200 | 0.2287 | 0.9267 |
0.1483 | 1.9467 | 7300 | 0.1954 | 0.934 |
0.1828 | 1.9733 | 7400 | 0.1922 | 0.9345 |
0.1424 | 2.0 | 7500 | 0.1732 | 0.9388 |
0.1396 | 2.0267 | 7600 | 0.1920 | 0.9312 |
0.1433 | 2.0533 | 7700 | 0.1966 | 0.9316 |
0.0639 | 2.08 | 7800 | 0.1811 | 0.9358 |
0.1334 | 2.1067 | 7900 | 0.1962 | 0.9338 |
0.2618 | 2.1333 | 8000 | 0.2176 | 0.9307 |
0.1167 | 2.16 | 8100 | 0.1869 | 0.9369 |
0.0498 | 2.1867 | 8200 | 0.2008 | 0.9357 |
0.0647 | 2.2133 | 8300 | 0.2179 | 0.9295 |
0.1444 | 2.24 | 8400 | 0.1934 | 0.9368 |
0.1431 | 2.2667 | 8500 | 0.2257 | 0.9256 |
0.1464 | 2.2933 | 8600 | 0.1796 | 0.9397 |
0.1152 | 2.32 | 8700 | 0.1746 | 0.9422 |
0.1679 | 2.3467 | 8800 | 0.1796 | 0.9416 |
0.1404 | 2.3733 | 8900 | 0.1949 | 0.9357 |
0.2441 | 2.4 | 9000 | 0.1742 | 0.9421 |
0.1206 | 2.4267 | 9100 | 0.1953 | 0.9366 |
0.2064 | 2.4533 | 9200 | 0.1908 | 0.9371 |
0.0851 | 2.48 | 9300 | 0.1915 | 0.9369 |
0.1101 | 2.5067 | 9400 | 0.1830 | 0.9411 |
0.1081 | 2.5333 | 9500 | 0.1938 | 0.9387 |
0.1559 | 2.56 | 9600 | 0.1692 | 0.9435 |
0.0974 | 2.5867 | 9700 | 0.1735 | 0.9426 |
0.1344 | 2.6133 | 9800 | 0.1834 | 0.9411 |
0.0983 | 2.64 | 9900 | 0.1915 | 0.9367 |
0.0941 | 2.6667 | 10000 | 0.1842 | 0.9399 |
0.127 | 2.6933 | 10100 | 0.2004 | 0.938 |
0.1112 | 2.7200 | 10200 | 0.1829 | 0.9395 |
0.1898 | 2.7467 | 10300 | 0.1872 | 0.9384 |
0.088 | 2.7733 | 10400 | 0.1831 | 0.9417 |
0.1301 | 2.8 | 10500 | 0.1819 | 0.9408 |
0.129 | 2.8267 | 10600 | 0.1831 | 0.9394 |
0.1225 | 2.8533 | 10700 | 0.1778 | 0.9406 |
0.1084 | 2.88 | 10800 | 0.1754 | 0.9399 |
0.1159 | 2.9067 | 10900 | 0.1696 | 0.9432 |
0.1037 | 2.9333 | 11000 | 0.1731 | 0.9431 |
0.1173 | 2.96 | 11100 | 0.1817 | 0.9406 |
0.0524 | 2.9867 | 11200 | 0.1703 | 0.9439 |
0.0635 | 3.0133 | 11300 | 0.1689 | 0.9436 |
0.0662 | 3.04 | 11400 | 0.1726 | 0.9454 |
0.068 | 3.0667 | 11500 | 0.1777 | 0.9449 |
0.0441 | 3.0933 | 11600 | 0.1942 | 0.9408 |
0.0397 | 3.12 | 11700 | 0.1794 | 0.9478 |
0.0804 | 3.1467 | 11800 | 0.1859 | 0.9467 |
0.0193 | 3.1733 | 11900 | 0.1991 | 0.9431 |
0.1243 | 3.2 | 12000 | 0.1867 | 0.946 |
0.062 | 3.2267 | 12100 | 0.1877 | 0.9465 |
0.032 | 3.2533 | 12200 | 0.2086 | 0.9432 |
0.0177 | 3.2800 | 12300 | 0.1971 | 0.9458 |
0.0582 | 3.3067 | 12400 | 0.1875 | 0.9467 |
0.0584 | 3.3333 | 12500 | 0.1805 | 0.9484 |
0.0814 | 3.36 | 12600 | 0.1829 | 0.9487 |
0.1127 | 3.3867 | 12700 | 0.1875 | 0.9466 |
0.0515 | 3.4133 | 12800 | 0.1906 | 0.9452 |
0.0568 | 3.44 | 12900 | 0.1794 | 0.9488 |
0.0642 | 3.4667 | 13000 | 0.1820 | 0.9479 |
0.1252 | 3.4933 | 13100 | 0.1844 | 0.9491 |
0.0512 | 3.52 | 13200 | 0.1787 | 0.9495 |
0.0241 | 3.5467 | 13300 | 0.1772 | 0.9486 |
0.0239 | 3.5733 | 13400 | 0.1723 | 0.952 |
0.0796 | 3.6 | 13500 | 0.1792 | 0.9494 |
0.0507 | 3.6267 | 13600 | 0.1744 | 0.9513 |
0.0443 | 3.6533 | 13700 | 0.1745 | 0.9505 |
0.1451 | 3.68 | 13800 | 0.1796 | 0.9483 |
0.0799 | 3.7067 | 13900 | 0.1800 | 0.9491 |
0.0416 | 3.7333 | 14000 | 0.1799 | 0.9481 |
0.0758 | 3.76 | 14100 | 0.1767 | 0.9496 |
0.0472 | 3.7867 | 14200 | 0.1776 | 0.9495 |
0.0325 | 3.8133 | 14300 | 0.1745 | 0.9506 |
0.0388 | 3.84 | 14400 | 0.1748 | 0.951 |
0.0579 | 3.8667 | 14500 | 0.1763 | 0.9504 |
0.0784 | 3.8933 | 14600 | 0.1759 | 0.9508 |
0.0811 | 3.92 | 14700 | 0.1750 | 0.951 |
0.0204 | 3.9467 | 14800 | 0.1749 | 0.9508 |
0.0767 | 3.9733 | 14900 | 0.1757 | 0.9502 |
0.0661 | 4.0 | 15000 | 0.1755 | 0.9504 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Kankanaghosh/vit-fashion-mnist
Base model
google/vit-base-patch16-224-in21k