|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-code_de_travail |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-code_de_travail |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8644 |
|
- Rouge1: 25.4859 |
|
- Rouge2: 9.5703 |
|
- Rougel: 20.373 |
|
- Rougelsum: 22.7081 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 100 | 1.9280 | 25.07 | 8.9144 | 19.6643 | 22.1851 | 19.0 | |
|
| No log | 2.0 | 200 | 1.8979 | 25.3572 | 9.3844 | 20.223 | 22.645 | 19.0 | |
|
| No log | 3.0 | 300 | 1.8786 | 25.3392 | 9.4074 | 20.2737 | 22.6969 | 19.0 | |
|
| No log | 4.0 | 400 | 1.8671 | 25.2214 | 9.3115 | 20.2123 | 22.5665 | 19.0 | |
|
| 2.1021 | 5.0 | 500 | 1.8644 | 25.4859 | 9.5703 | 20.373 | 22.7081 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.2 |
|
|