Edit model card

New version available, trained on more data and otherwise identical KennethTM/MiniLM-L6-danish-reranker-v2

MiniLM-L6-danish-reranker

This is a lightweight (~22 M parameters) sentence-transformers model for Danish NLP: It takes two sentences as input and outputs a relevance score. Therefore, the model can be used for information retrieval, e.g. given a query and candidate matches, rank the candidates by their relevance.

The maximum sequence length is 512 tokens (for both passages).

The model was not pre-trained from scratch but adapted from the English version of cross-encoder/ms-marco-MiniLM-L-6-v2 with a Danish tokenizer.

Trained on ELI5 and SQUAD data machine translated from English to Danish.

Usage with Transformers

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained('KennethTM/MiniLM-L6-danish-reranker')
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-reranker')
features = tokenizer(['Kører der cykler på vejen?', 'Kører der cykler på vejen?'], ['En panda løber på vejen.', 'En mand kører hurtigt forbi på cykel.'],  padding=True, truncation=True, return_tensors="pt")

model.eval()
with torch.no_grad():
    scores = model(**features).logits
    print(scores)

Usage with SentenceTransformers

The usage becomes easier when you have SentenceTransformers installed. Then, you can use the pre-trained models like this:

from sentence_transformers import CrossEncoder
model = CrossEncoder('KennethTM/MiniLM-L6-danish-reranker', max_length=512)
scores = model.predict([('Kører der cykler på vejen?', 'En panda løber på vejen.'), ('Kører der cykler på vejen?', 'En mand kører hurtigt forbi på cykel.')])
Downloads last month
2,690
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train KennethTM/MiniLM-L6-danish-reranker

Spaces using KennethTM/MiniLM-L6-danish-reranker 2