Kevincp560's picture
update model card README.md
813ed7d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - pub_med_summarization_dataset
metrics:
  - rouge
model-index:
  - name: t5-base-finetuned-pubmed
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: pub_med_summarization_dataset
          type: pub_med_summarization_dataset
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 9.3771

t5-base-finetuned-pubmed

This model is a fine-tuned version of t5-base on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6311
  • Rouge1: 9.3771
  • Rouge2: 3.7042
  • Rougel: 8.4912
  • Rougelsum: 9.0013
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.0957 1.0 4000 1.9006 8.6968 3.2473 7.9565 8.3224 19.0
2.0489 2.0 8000 1.8571 8.6877 3.2461 7.9311 8.2991 19.0
2.7345 3.0 12000 2.6112 9.585 3.0129 8.4729 9.1109 19.0
3.0585 4.0 16000 2.7222 9.7011 3.3549 8.6588 9.2646 19.0
2.9437 5.0 20000 2.6311 9.3771 3.7042 8.4912 9.0013 19.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.6