DarkAtom-12B-v3

Something that shouldn't exist.

DarkAtomLogo256.png

This is an interesting merge of 18 cool models, created using mergekit. It took quite a bit of my time, mostly due to the limitations of my old hardware, but I think it was definitely worth it. Enjoy exploring :)

Merge Details

Method

This model was merged using the multistep (Slerp|ModelStock|Ties) process and remerge with some model variations for best result.

Models

The following models were included in the merge:

Configuration

The following YAML configurations was used to produce this model. Some parameters may have diffirent pattern, but its not important to understand my workflow.

# Generation_1 from 18 original models:
models:
  - model: Original_Model_M
  - model: Original_Model_K
merge_method: slerp
base_model: Original_Model_M
dtype: bfloat16
parameters:
  t: [0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9]

# Variant_N from Generation_1 and AlphaMerge:
models:
  - model: SecretModel_A
    parameters:
      density: [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
      weight:  [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
  - model: SecretModel_B
    parameters:
      density: [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2]
      weight:  [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8]
  - model: SecretModel_C
    parameters:
      density: [0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3]
      weight:  [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7]
  - model: SecretModel_D
    parameters:
      density: [0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4]
      weight:  [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6]
  - model: SecretModel_E
    parameters:
      density: [0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5]
      weight:  [0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5]
  - model: SecretModel_F
    parameters:
      density: [0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
      weight:  [0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4]
  - model: SecretModel_G
    parameters:
      density: [0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
      weight:  [0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]
  - model: SecretModel_H
    parameters:
      density: [0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
      weight:  [0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]
  - model: SecretModel_I
    parameters:
      density: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
      weight:  [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
merge_method: ties
base_model: AlphaMerge
dtype: bfloat16

# Model stock merge for create:
# + Generation_2 from SecretModels
# + Variant_M from Generation_2
# + AlphaMerge from intuitively selected and forgotten models
models:
  - model: SecretModel_A
  - model: SecretModel_B
  - model: SecretModel_C
merge_method: model_stock
base_model: SecretModel_A
dtype: bfloat16

# Final Variant from Variant_N, Variant_M, and one good model from Generation_1:
models:
  - model: Variant_N
    parameters:
      density: [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
      weight:  [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
  - model: Good_G1_Model
    parameters:
      density: [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2]
      weight:  [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.8]
merge_method: ties
base_model: Variant_M
dtype: bfloat16

My thanks to the authors of the original models, your work is incredible. Have a good time 🖤

Downloads last month
92
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Khetterman/DarkAtom-12B-v3