xlm-roberta-large-finetuned-conll2003
This model is a fine-tuned version of xlm-roberta-large on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0412
- Precision: 0.9621
- Recall: 0.9692
- F1: 0.9656
- Accuracy: 0.9937
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1591 | 1.0 | 896 | 0.0440 | 0.9388 | 0.9451 | 0.9420 | 0.9896 |
0.0335 | 2.0 | 1792 | 0.0361 | 0.9512 | 0.9586 | 0.9549 | 0.9924 |
0.0195 | 3.0 | 2688 | 0.0378 | 0.9570 | 0.9636 | 0.9603 | 0.9931 |
0.0104 | 4.0 | 3584 | 0.0396 | 0.9587 | 0.9613 | 0.9600 | 0.9928 |
0.0064 | 5.0 | 4480 | 0.0400 | 0.9617 | 0.9675 | 0.9646 | 0.9937 |
0.0032 | 6.0 | 5376 | 0.0412 | 0.9621 | 0.9692 | 0.9656 | 0.9937 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Kiaset/xlm-roberta-large-finetuned-conll2003
Base model
FacebookAI/xlm-roberta-largeDataset used to train Kiaset/xlm-roberta-large-finetuned-conll2003
Evaluation results
- Precision on conll2003validation set self-reported0.962
- Recall on conll2003validation set self-reported0.969
- F1 on conll2003validation set self-reported0.966
- Accuracy on conll2003validation set self-reported0.994