wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6411
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 13
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8965 1.0 113 1.8976 0.28
1.3295 2.0 226 1.4744 0.52
1.159 3.0 339 1.0918 0.66
0.5861 4.0 452 0.9779 0.74
1.0464 5.0 565 0.9167 0.73
0.8294 6.0 678 0.8404 0.75
0.462 7.0 791 0.8323 0.78
0.1366 8.0 904 0.7485 0.8
0.179 9.0 1017 0.6523 0.87
0.0361 10.0 1130 0.6313 0.87
0.2355 11.0 1243 0.6609 0.88
0.0543 12.0 1356 0.6559 0.88
0.0201 13.0 1469 0.6411 0.88

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kibalama/wav2vec2-base-finetuned-gtzan

Finetuned
(703)
this model

Dataset used to train Kibalama/wav2vec2-base-finetuned-gtzan

Evaluation results