whisper-tiny-sn / README.md
Kittech's picture
End of training
18a01e2 verified
|
raw
history blame
2.13 kB
metadata
language:
  - sn
license: apache-2.0
library_name: peft
tags:
  - whisper-event and peft-lora
  - generated_from_trainer
base_model: openai/whisper-tiny
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Tiny Sn - Bright Chirindo
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: sn_zw
          split: None
          args: sn_zw
        metrics:
          - type: wer
            value: 95.27619047619048
            name: Wer

Whisper Tiny Sn - Bright Chirindo

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9909
  • Wer: 95.2762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.087 3.0164 1000 2.4026 109.4095
1.8305 6.0328 2000 2.1613 101.2419
1.7145 9.0492 3000 2.0536 99.8705
1.6314 13.0044 4000 2.0050 99.0095
1.665 16.0208 5000 1.9909 95.2762

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.2.dev0
  • Tokenizers 0.19.1