ItaLegalEmb_v2 / README.md
Obiactum's picture
Update README.md
010892d verified
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - Italian

ItaLegalEmb_v2 ๐Ÿ‡ฎ๐Ÿ‡น

ItaLegalEmb_v2 is the second version of the ItaLegalEmb family embedding models. As his predecessor, it is a specialized embedding model specifically trained on a corpus of Italian legal documents.

ItalegalEmb_v2 is based on BAAI/bge-m3, a SOTA embedding model with outstanding multilingual skills.

Features: Dimensions: 1024 Sequence Lenght: 8192

Evaluation Results

In our evaluations on the specific domain, ItaLegalEmb_v2 scores 93%, while OpenAI stops at 79% and ItaLegalEmb at 85%.

As llama.cpp team has just released (early August 2024) a version which supports XLMRoberta embedding models (ItaLegalEmb_v2 belongs to this), a gguf Q8 version of the model is also included here ๐Ÿ˜‰.

This is a sentence-transformers model: It can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

DataLoader:

torch.utils.data.dataloader.DataLoader of length 190 with parameters:

{'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 3,
    "evaluation_steps": 50,
    "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 57,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors

@misc{ItaLegalEmb,
title = {Kleva-ai/ItaLegalEmb_v2: An embedding model fine-tuned on Italian legal documents.},
author = {Obiactum},
year = {2024},
publisher = {Kleva-ai},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/Kleva-ai/ItaLegalEmb_v2}},
}