|
--- |
|
|
|
tags: |
|
- text-generation |
|
--- |
|
# Model Card for GPT-J-6B-Skein |
|
|
|
# Model Details |
|
|
|
## Model Description |
|
|
|
|
|
- **Developed by:** KoboldAI |
|
- **Shared by [Optional]:** More information needed |
|
- **Model type:** Text Generation |
|
- **Language(s) (NLP):** More information needed |
|
- **License:** More information needed |
|
- **Related Models:** [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B?text=My+name+is+Mariama%2C+my+favorite) |
|
- **Parent Model:** GPT-J |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/kingoflolz/mesh-transformer-jax) |
|
- [Associated Model Doc](https://huggingface.co/docs/transformers/main/en/model_doc/gptj#transformers.GPTJForCausalLM) |
|
|
|
# Uses |
|
|
|
|
|
## Direct Use |
|
|
|
This model can be used for the task of text generation |
|
|
|
## Downstream Use [Optional] |
|
|
|
More information needed |
|
|
|
## Out-of-Scope Use |
|
|
|
The model should not be used to intentionally create hostile or alienating environments for people. |
|
|
|
# Bias, Risks, and Limitations |
|
The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. |
|
GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. |
|
As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. |
|
|
|
See the [GPT-J 6B model card](https://huggingface.co/EleutherAI/gpt-j-6B?text=My+name+is+Mariama%2C+my+favorite) for more information. |
|
|
|
## Recommendations |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
|
|
# Training Details |
|
|
|
## Training Data |
|
|
|
More information needed |
|
|
|
## Training Procedure |
|
|
|
|
|
### Preprocessing |
|
|
|
More information needed |
|
|
|
### Speeds, Sizes, Times |
|
|
|
More information needed |
|
|
|
# Evaluation |
|
|
|
|
|
## Testing Data, Factors & Metrics |
|
|
|
### Testing Data |
|
|
|
More information needed |
|
|
|
### Factors |
|
|
|
|
|
### Metrics |
|
|
|
More information needed |
|
## Results |
|
|
|
More information needed |
|
|
|
# Model Examination |
|
|
|
More information needed |
|
|
|
# Environmental Impact |
|
|
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** More information needed |
|
- **Hours used:** More information needed |
|
- **Cloud Provider:** More information needed |
|
- **Compute Region:** More information needed |
|
- **Carbon Emitted:** More information needed |
|
|
|
# Technical Specifications [optional] |
|
|
|
## Model Architecture and Objective |
|
|
|
More information needed |
|
|
|
## Compute Infrastructure |
|
|
|
More information needed |
|
|
|
### Hardware |
|
|
|
More information needed |
|
|
|
### Software |
|
More information needed |
|
|
|
# Citation |
|
|
|
|
|
**BibTeX:** |
|
``` |
|
@misc{mesh-transformer-jax, |
|
author = {Wang, Ben}, |
|
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, |
|
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, |
|
year = 2021, |
|
month = May |
|
} |
|
``` |
|
|
|
# Glossary [optional] |
|
More information needed |
|
|
|
# More Information [optional] |
|
|
|
More information needed |
|
|
|
# Model Card Authors [optional] |
|
|
|
|
|
KoboldAI in collaboration with Ezi Ozoani and the Hugging Face team |
|
|
|
# Model Card Contact |
|
|
|
More information needed |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("KoboldAI/GPT-J-6B-Skein") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("KoboldAI/GPT-J-6B-Skein") |
|
``` |
|
</details> |
|
|