bert-base-vietnamese-upos
Model Description
This is a BERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing, derived from vibert-base-cased. Every word is tagged by UPOS(Universal Part-Of-Speech).
How to Use
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("Hai cái đầu thì tốt hơn một."))
or
import esupar
nlp=esupar.load("KoichiYasuoka/bert-base-vietnamese-upos")
print(nlp("Hai cái đầu thì tốt hơn một."))
See Also
esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
- Downloads last month
- 122
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for KoichiYasuoka/bert-base-vietnamese-upos
Base model
FPTAI/vibert-base-cased