KoichiYasuoka's picture
base_model
67957af
|
raw
history blame
1.14 kB
metadata
language:
  - zh
tags:
  - chinese
  - token-classification
  - pos
  - wikipedia
  - dependency-parsing
base_model: hfl/chinese-roberta-wwm-ext
datasets:
  - universal_dependencies
license: apache-2.0
pipeline_tag: token-classification

chinese-roberta-base-upos

Model Description

This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from chinese-roberta-wwm-ext. Every word is tagged by UPOS (Universal Part-Of-Speech).

How to Use

from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos")

or

import esupar
nlp=esupar.load("KoichiYasuoka/chinese-roberta-base-upos")

See Also

esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models