Edit model card

[ACL2024] Answer is All You Need: Instruction-following Text Embedding via Answering the Question

InBedder🛌 is a text embedder that is designed to follow instructions. Instruction-following text embedder can capture characteristics of texts specified by user instructions. InBedder offers a novel viewpoint that treats the instruction as a question about the input text and encodes the expected answers to obtain the representation accordingly. We show that InBedder is aware of instructions with different evaluation tasks.

image/png

The following is a use case from https://github.com/zhang-yu-wei/InBedder/blob/main/UseCase.ipynb

import torch
from torch import nn
from torch.nn.functional import gelu, cosine_similarity
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM

import numpy as np

class InBedder():
    
    def __init__(self, path='KomeijiForce/inbedder-roberta-large', device='cuda:0'):
        
        model = AutoModelForMaskedLM.from_pretrained(path)
    
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.model = model.roberta
        self.dense = model.lm_head.dense
        self.layer_norm = model.lm_head.layer_norm
        
        self.device = torch.device(device)
        self.model = self.model.to(self.device)
        self.dense = self.dense.to(self.device)
        self.layer_norm = self.layer_norm.to(self.device)
        
        self.vocab = self.tokenizer.get_vocab()
        self.vocab = {self.vocab[key]:key for key in self.vocab}
        
    def encode(self, input_texts, instruction, n_mask):
        
        if type(instruction) == str:
            prompts = [instruction + self.tokenizer.mask_token*n_mask for input_text in input_texts]
        elif type(instruction) == list:
            prompts = [inst + self.tokenizer.mask_token*n_mask for inst in instruction]
    
        inputs = self.tokenizer(input_texts, prompts, padding=True, truncation=True, return_tensors='pt').to(self.device)

        mask = inputs.input_ids.eq(self.tokenizer.mask_token_id)
        
        outputs = self.model(**inputs)

        logits = outputs.last_hidden_state[mask]
        
        logits = self.layer_norm(gelu(self.dense(logits)))
        
        logits = logits.reshape(len(input_texts), n_mask, -1)
        
        logits = logits.mean(1)
            
        logits = (logits - logits.mean(1, keepdim=True)) / logits.std(1, keepdim=True)
        
        return logits

inbedder = InBedder(path='KomeijiForce/inbedder-roberta-large', device='cpu')

texts = ["I love cat!", "I love dog!", "I dislike cat!"]
instruction = "What is the animal mentioned here?"
embeddings = inbedder.encode(texts, instruction, 3)

cosine_similarity(embeddings[:1], embeddings[1:], dim=1)
# tensor([0.9374, 0.9917], grad_fn=<SumBackward1>)

texts = ["I love cat!", "I love dog!", "I dislike cat!"]
instruction = "What is emotion expressed here?"
embeddings = inbedder.encode(texts, instruction, 3)

cosine_similarity(embeddings[:1], embeddings[1:], dim=1)
# tensor([0.9859, 0.8537], grad_fn=<SumBackward1>)
Downloads last month
67
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train KomeijiForce/inbedder-roberta-large