roberta-large-ner-ghtk-gam-7-label-new-data-3090-11Sep-1

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3028
  • Hiều cao khách hàng: {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20}
  • Oại da: {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23}
  • Àu da: {'precision': 0.78125, 'recall': 0.6578947368421053, 'f1': 0.7142857142857143, 'number': 38}
  • Áng khuôn mặt: {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16}
  • Áng người: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
  • Ân nặng khách hàng: {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31}
  • Ặc điểm khác của da: {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28}
  • Overall Precision: 0.8563
  • Overall Recall: 0.8462
  • Overall F1: 0.8512
  • Overall Accuracy: 0.9619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Hiều cao khách hàng Oại da Àu da Áng khuôn mặt Áng người Ân nặng khách hàng Ặc điểm khác của da Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 141 0.2795 {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} {'precision': 0.5161290322580645, 'recall': 0.6956521739130435, 'f1': 0.5925925925925926, 'number': 23} {'precision': 0.6666666666666666, 'recall': 0.5789473684210527, 'f1': 0.619718309859155, 'number': 38} {'precision': 0.625, 'recall': 0.625, 'f1': 0.625, 'number': 16} {'precision': 0.6666666666666666, 'recall': 0.7692307692307693, 'f1': 0.7142857142857142, 'number': 13} {'precision': 0.8888888888888888, 'recall': 0.7741935483870968, 'f1': 0.8275862068965517, 'number': 31} {'precision': 0.5161290322580645, 'recall': 0.5714285714285714, 'f1': 0.5423728813559322, 'number': 28} 0.6744 0.6864 0.6804 0.9196
No log 2.0 282 0.2887 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.7727272727272727, 'recall': 0.7391304347826086, 'f1': 0.7555555555555555, 'number': 23} {'precision': 0.6363636363636364, 'recall': 0.5526315789473685, 'f1': 0.5915492957746479, 'number': 38} {'precision': 0.6, 'recall': 0.75, 'f1': 0.6666666666666665, 'number': 16} {'precision': 0.7058823529411765, 'recall': 0.9230769230769231, 'f1': 0.8000000000000002, 'number': 13} {'precision': 0.90625, 'recall': 0.9354838709677419, 'f1': 0.9206349206349206, 'number': 31} {'precision': 0.6571428571428571, 'recall': 0.8214285714285714, 'f1': 0.73015873015873, 'number': 28} 0.7363 0.7929 0.7635 0.9262
No log 3.0 423 0.2731 {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} {'precision': 0.8095238095238095, 'recall': 0.7391304347826086, 'f1': 0.7727272727272727, 'number': 23} {'precision': 0.7419354838709677, 'recall': 0.6052631578947368, 'f1': 0.6666666666666666, 'number': 38} {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16} {'precision': 0.8571428571428571, 'recall': 0.9230769230769231, 'f1': 0.888888888888889, 'number': 13} {'precision': 0.9655172413793104, 'recall': 0.9032258064516129, 'f1': 0.9333333333333333, 'number': 31} {'precision': 0.5121951219512195, 'recall': 0.75, 'f1': 0.6086956521739131, 'number': 28} 0.7670 0.7988 0.7826 0.9328
0.4116 4.0 564 0.2516 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.8636363636363636, 'recall': 0.8260869565217391, 'f1': 0.8444444444444444, 'number': 23} {'precision': 0.7241379310344828, 'recall': 0.5526315789473685, 'f1': 0.6268656716417911, 'number': 38} {'precision': 0.7777777777777778, 'recall': 0.875, 'f1': 0.823529411764706, 'number': 16} {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} {'precision': 0.78125, 'recall': 0.8928571428571429, 'f1': 0.8333333333333334, 'number': 28} 0.8333 0.8284 0.8309 0.9502
0.4116 5.0 705 0.2274 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.8181818181818182, 'recall': 0.782608695652174, 'f1': 0.8, 'number': 23} {'precision': 0.8064516129032258, 'recall': 0.6578947368421053, 'f1': 0.7246376811594202, 'number': 38} {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.9285714285714286, 'recall': 0.8387096774193549, 'f1': 0.8813559322033899, 'number': 31} {'precision': 0.8275862068965517, 'recall': 0.8571428571428571, 'f1': 0.8421052631578947, 'number': 28} 0.8528 0.8225 0.8373 0.9594
0.4116 6.0 846 0.2420 {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 20} {'precision': 0.6666666666666666, 'recall': 0.6956521739130435, 'f1': 0.6808510638297872, 'number': 23} {'precision': 0.7878787878787878, 'recall': 0.6842105263157895, 'f1': 0.732394366197183, 'number': 38} {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} {'precision': 0.7666666666666667, 'recall': 0.8214285714285714, 'f1': 0.793103448275862, 'number': 28} 0.8140 0.8284 0.8211 0.9527
0.4116 7.0 987 0.2390 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.8636363636363636, 'recall': 0.8260869565217391, 'f1': 0.8444444444444444, 'number': 23} {'precision': 0.7419354838709677, 'recall': 0.6052631578947368, 'f1': 0.6666666666666666, 'number': 38} {'precision': 0.8421052631578947, 'recall': 1.0, 'f1': 0.9142857142857143, 'number': 16} {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} {'precision': 0.9032258064516129, 'recall': 0.9032258064516129, 'f1': 0.9032258064516129, 'number': 31} {'precision': 0.896551724137931, 'recall': 0.9285714285714286, 'f1': 0.912280701754386, 'number': 28} 0.8571 0.8521 0.8546 0.9619
0.1291 8.0 1128 0.2731 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} {'precision': 0.75, 'recall': 0.631578947368421, 'f1': 0.6857142857142857, 'number': 38} {'precision': 0.7894736842105263, 'recall': 0.9375, 'f1': 0.8571428571428572, 'number': 16} {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} {'precision': 0.896551724137931, 'recall': 0.9285714285714286, 'f1': 0.912280701754386, 'number': 28} 0.8623 0.8521 0.8571 0.9602
0.1291 9.0 1269 0.2968 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} {'precision': 0.7741935483870968, 'recall': 0.631578947368421, 'f1': 0.6956521739130435, 'number': 38} {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31} {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28} 0.8537 0.8284 0.8408 0.9610
0.1291 10.0 1410 0.3028 {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} {'precision': 0.78125, 'recall': 0.6578947368421053, 'f1': 0.7142857142857143, 'number': 38} {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31} {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28} 0.8563 0.8462 0.8512 0.9619

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Kudod/roberta-large-ner-ghtk-gam-7-label-new-data-3090-11Sep-1

Finetuned
(354)
this model