roberta-large-ner-ghtk-gam-7-label-new-data-3090-11Sep-1
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3028
- Hiều cao khách hàng: {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20}
- Oại da: {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23}
- Àu da: {'precision': 0.78125, 'recall': 0.6578947368421053, 'f1': 0.7142857142857143, 'number': 38}
- Áng khuôn mặt: {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16}
- Áng người: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
- Ân nặng khách hàng: {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31}
- Ặc điểm khác của da: {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28}
- Overall Precision: 0.8563
- Overall Recall: 0.8462
- Overall F1: 0.8512
- Overall Accuracy: 0.9619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Hiều cao khách hàng | Oại da | Àu da | Áng khuôn mặt | Áng người | Ân nặng khách hàng | Ặc điểm khác của da | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 141 | 0.2795 | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.5161290322580645, 'recall': 0.6956521739130435, 'f1': 0.5925925925925926, 'number': 23} | {'precision': 0.6666666666666666, 'recall': 0.5789473684210527, 'f1': 0.619718309859155, 'number': 38} | {'precision': 0.625, 'recall': 0.625, 'f1': 0.625, 'number': 16} | {'precision': 0.6666666666666666, 'recall': 0.7692307692307693, 'f1': 0.7142857142857142, 'number': 13} | {'precision': 0.8888888888888888, 'recall': 0.7741935483870968, 'f1': 0.8275862068965517, 'number': 31} | {'precision': 0.5161290322580645, 'recall': 0.5714285714285714, 'f1': 0.5423728813559322, 'number': 28} | 0.6744 | 0.6864 | 0.6804 | 0.9196 |
No log | 2.0 | 282 | 0.2887 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.7727272727272727, 'recall': 0.7391304347826086, 'f1': 0.7555555555555555, 'number': 23} | {'precision': 0.6363636363636364, 'recall': 0.5526315789473685, 'f1': 0.5915492957746479, 'number': 38} | {'precision': 0.6, 'recall': 0.75, 'f1': 0.6666666666666665, 'number': 16} | {'precision': 0.7058823529411765, 'recall': 0.9230769230769231, 'f1': 0.8000000000000002, 'number': 13} | {'precision': 0.90625, 'recall': 0.9354838709677419, 'f1': 0.9206349206349206, 'number': 31} | {'precision': 0.6571428571428571, 'recall': 0.8214285714285714, 'f1': 0.73015873015873, 'number': 28} | 0.7363 | 0.7929 | 0.7635 | 0.9262 |
No log | 3.0 | 423 | 0.2731 | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 0.8095238095238095, 'recall': 0.7391304347826086, 'f1': 0.7727272727272727, 'number': 23} | {'precision': 0.7419354838709677, 'recall': 0.6052631578947368, 'f1': 0.6666666666666666, 'number': 38} | {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16} | {'precision': 0.8571428571428571, 'recall': 0.9230769230769231, 'f1': 0.888888888888889, 'number': 13} | {'precision': 0.9655172413793104, 'recall': 0.9032258064516129, 'f1': 0.9333333333333333, 'number': 31} | {'precision': 0.5121951219512195, 'recall': 0.75, 'f1': 0.6086956521739131, 'number': 28} | 0.7670 | 0.7988 | 0.7826 | 0.9328 |
0.4116 | 4.0 | 564 | 0.2516 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8636363636363636, 'recall': 0.8260869565217391, 'f1': 0.8444444444444444, 'number': 23} | {'precision': 0.7241379310344828, 'recall': 0.5526315789473685, 'f1': 0.6268656716417911, 'number': 38} | {'precision': 0.7777777777777778, 'recall': 0.875, 'f1': 0.823529411764706, 'number': 16} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 0.78125, 'recall': 0.8928571428571429, 'f1': 0.8333333333333334, 'number': 28} | 0.8333 | 0.8284 | 0.8309 | 0.9502 |
0.4116 | 5.0 | 705 | 0.2274 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8181818181818182, 'recall': 0.782608695652174, 'f1': 0.8, 'number': 23} | {'precision': 0.8064516129032258, 'recall': 0.6578947368421053, 'f1': 0.7246376811594202, 'number': 38} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9285714285714286, 'recall': 0.8387096774193549, 'f1': 0.8813559322033899, 'number': 31} | {'precision': 0.8275862068965517, 'recall': 0.8571428571428571, 'f1': 0.8421052631578947, 'number': 28} | 0.8528 | 0.8225 | 0.8373 | 0.9594 |
0.4116 | 6.0 | 846 | 0.2420 | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 20} | {'precision': 0.6666666666666666, 'recall': 0.6956521739130435, 'f1': 0.6808510638297872, 'number': 23} | {'precision': 0.7878787878787878, 'recall': 0.6842105263157895, 'f1': 0.732394366197183, 'number': 38} | {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 0.7666666666666667, 'recall': 0.8214285714285714, 'f1': 0.793103448275862, 'number': 28} | 0.8140 | 0.8284 | 0.8211 | 0.9527 |
0.4116 | 7.0 | 987 | 0.2390 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8636363636363636, 'recall': 0.8260869565217391, 'f1': 0.8444444444444444, 'number': 23} | {'precision': 0.7419354838709677, 'recall': 0.6052631578947368, 'f1': 0.6666666666666666, 'number': 38} | {'precision': 0.8421052631578947, 'recall': 1.0, 'f1': 0.9142857142857143, 'number': 16} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.9032258064516129, 'recall': 0.9032258064516129, 'f1': 0.9032258064516129, 'number': 31} | {'precision': 0.896551724137931, 'recall': 0.9285714285714286, 'f1': 0.912280701754386, 'number': 28} | 0.8571 | 0.8521 | 0.8546 | 0.9619 |
0.1291 | 8.0 | 1128 | 0.2731 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} | {'precision': 0.75, 'recall': 0.631578947368421, 'f1': 0.6857142857142857, 'number': 38} | {'precision': 0.7894736842105263, 'recall': 0.9375, 'f1': 0.8571428571428572, 'number': 16} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.896551724137931, 'recall': 0.9285714285714286, 'f1': 0.912280701754386, 'number': 28} | 0.8623 | 0.8521 | 0.8571 | 0.9602 |
0.1291 | 9.0 | 1269 | 0.2968 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} | {'precision': 0.7741935483870968, 'recall': 0.631578947368421, 'f1': 0.6956521739130435, 'number': 38} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31} | {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28} | 0.8537 | 0.8284 | 0.8408 | 0.9610 |
0.1291 | 10.0 | 1410 | 0.3028 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} | {'precision': 0.78125, 'recall': 0.6578947368421053, 'f1': 0.7142857142857143, 'number': 38} | {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31} | {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28} | 0.8563 | 0.8462 | 0.8512 | 0.9619 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for Kudod/roberta-large-ner-ghtk-gam-7-label-new-data-3090-11Sep-1
Base model
FacebookAI/xlm-roberta-large