answerdotai-ModernBERT-large_20241230-093521

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision@0.01 Recall@0.01 F1@0.01 Accuracy@0.01 Precision@0.02 Recall@0.02 F1@0.02 Accuracy@0.02 Precision@0.03 Recall@0.03 F1@0.03 Accuracy@0.03 Precision@0.04 Recall@0.04 F1@0.04 Accuracy@0.04 Precision@0.05 Recall@0.05 F1@0.05 Accuracy@0.05 Precision@0.06 Recall@0.06 F1@0.06 Accuracy@0.06 Precision@0.07 Recall@0.07 F1@0.07 Accuracy@0.07 Precision@0.08 Recall@0.08 F1@0.08 Accuracy@0.08 Precision@0.09 Recall@0.09 F1@0.09 Accuracy@0.09 Precision@0.1 Recall@0.1 F1@0.1 Accuracy@0.1 Precision@0.11 Recall@0.11 F1@0.11 Accuracy@0.11 Precision@0.12 Recall@0.12 F1@0.12 Accuracy@0.12 Precision@0.13 Recall@0.13 F1@0.13 Accuracy@0.13 Precision@0.14 Recall@0.14 F1@0.14 Accuracy@0.14 Precision@0.15 Recall@0.15 F1@0.15 Accuracy@0.15 Precision@0.16 Recall@0.16 F1@0.16 Accuracy@0.16 Precision@0.17 Recall@0.17 F1@0.17 Accuracy@0.17 Precision@0.18 Recall@0.18 F1@0.18 Accuracy@0.18 Precision@0.19 Recall@0.19 F1@0.19 Accuracy@0.19 Precision@0.2 Recall@0.2 F1@0.2 Accuracy@0.2 Precision@0.21 Recall@0.21 F1@0.21 Accuracy@0.21 Precision@0.22 Recall@0.22 F1@0.22 Accuracy@0.22 Precision@0.23 Recall@0.23 F1@0.23 Accuracy@0.23 Precision@0.24 Recall@0.24 F1@0.24 Accuracy@0.24 Precision@0.25 Recall@0.25 F1@0.25 Accuracy@0.25 Precision@0.26 Recall@0.26 F1@0.26 Accuracy@0.26 Precision@0.27 Recall@0.27 F1@0.27 Accuracy@0.27 Precision@0.28 Recall@0.28 F1@0.28 Accuracy@0.28 Precision@0.29 Recall@0.29 F1@0.29 Accuracy@0.29 Precision@0.3 Recall@0.3 F1@0.3 Accuracy@0.3 Precision@0.31 Recall@0.31 F1@0.31 Accuracy@0.31 Precision@0.32 Recall@0.32 F1@0.32 Accuracy@0.32 Precision@0.33 Recall@0.33 F1@0.33 Accuracy@0.33 Precision@0.34 Recall@0.34 F1@0.34 Accuracy@0.34 Precision@0.35 Recall@0.35 F1@0.35 Accuracy@0.35 Precision@0.36 Recall@0.36 F1@0.36 Accuracy@0.36 Precision@0.37 Recall@0.37 F1@0.37 Accuracy@0.37 Precision@0.38 Recall@0.38 F1@0.38 Accuracy@0.38 Precision@0.39 Recall@0.39 F1@0.39 Accuracy@0.39 Precision@0.4 Recall@0.4 F1@0.4 Accuracy@0.4 Precision@0.41 Recall@0.41 F1@0.41 Accuracy@0.41 Precision@0.42 Recall@0.42 F1@0.42 Accuracy@0.42 Precision@0.43 Recall@0.43 F1@0.43 Accuracy@0.43 Precision@0.44 Recall@0.44 F1@0.44 Accuracy@0.44 Precision@0.45 Recall@0.45 F1@0.45 Accuracy@0.45 Precision@0.46 Recall@0.46 F1@0.46 Accuracy@0.46 Precision@0.47 Recall@0.47 F1@0.47 Accuracy@0.47 Precision@0.48 Recall@0.48 F1@0.48 Accuracy@0.48 Precision@0.49 Recall@0.49 F1@0.49 Accuracy@0.49 Precision@0.5 Recall@0.5 F1@0.5 Accuracy@0.5 Precision@0.51 Recall@0.51 F1@0.51 Accuracy@0.51 Precision@0.52 Recall@0.52 F1@0.52 Accuracy@0.52 Precision@0.53 Recall@0.53 F1@0.53 Accuracy@0.53 Precision@0.54 Recall@0.54 F1@0.54 Accuracy@0.54 Precision@0.55 Recall@0.55 F1@0.55 Accuracy@0.55 Precision@0.56 Recall@0.56 F1@0.56 Accuracy@0.56 Precision@0.57 Recall@0.57 F1@0.57 Accuracy@0.57 Precision@0.58 Recall@0.58 F1@0.58 Accuracy@0.58 Precision@0.59 Recall@0.59 F1@0.59 Accuracy@0.59 Precision@0.6 Recall@0.6 F1@0.6 Accuracy@0.6 Precision@0.61 Recall@0.61 F1@0.61 Accuracy@0.61 Precision@0.62 Recall@0.62 F1@0.62 Accuracy@0.62 Precision@0.63 Recall@0.63 F1@0.63 Accuracy@0.63 Precision@0.64 Recall@0.64 F1@0.64 Accuracy@0.64 Precision@0.65 Recall@0.65 F1@0.65 Accuracy@0.65 Precision@0.66 Recall@0.66 F1@0.66 Accuracy@0.66 Precision@0.67 Recall@0.67 F1@0.67 Accuracy@0.67 Precision@0.68 Recall@0.68 F1@0.68 Accuracy@0.68 Precision@0.69 Recall@0.69 F1@0.69 Accuracy@0.69 Precision@0.7 Recall@0.7 F1@0.7 Accuracy@0.7 Precision@0.71 Recall@0.71 F1@0.71 Accuracy@0.71 Precision@0.72 Recall@0.72 F1@0.72 Accuracy@0.72 Precision@0.73 Recall@0.73 F1@0.73 Accuracy@0.73 Precision@0.74 Recall@0.74 F1@0.74 Accuracy@0.74 Precision@0.75 Recall@0.75 F1@0.75 Accuracy@0.75 Precision@0.76 Recall@0.76 F1@0.76 Accuracy@0.76 Precision@0.77 Recall@0.77 F1@0.77 Accuracy@0.77 Precision@0.78 Recall@0.78 F1@0.78 Accuracy@0.78 Precision@0.79 Recall@0.79 F1@0.79 Accuracy@0.79 Precision@0.8 Recall@0.8 F1@0.8 Accuracy@0.8 Precision@0.81 Recall@0.81 F1@0.81 Accuracy@0.81 Precision@0.82 Recall@0.82 F1@0.82 Accuracy@0.82 Precision@0.83 Recall@0.83 F1@0.83 Accuracy@0.83 Precision@0.84 Recall@0.84 F1@0.84 Accuracy@0.84 Precision@0.85 Recall@0.85 F1@0.85 Accuracy@0.85 Precision@0.86 Recall@0.86 F1@0.86 Accuracy@0.86 Precision@0.87 Recall@0.87 F1@0.87 Accuracy@0.87 Precision@0.88 Recall@0.88 F1@0.88 Accuracy@0.88 Precision@0.89 Recall@0.89 F1@0.89 Accuracy@0.89 Precision@0.9 Recall@0.9 F1@0.9 Accuracy@0.9 Precision@0.91 Recall@0.91 F1@0.91 Accuracy@0.91 Precision@0.92 Recall@0.92 F1@0.92 Accuracy@0.92 Precision@0.93 Recall@0.93 F1@0.93 Accuracy@0.93 Precision@0.94 Recall@0.94 F1@0.94 Accuracy@0.94 Precision@0.95 Recall@0.95 F1@0.95 Accuracy@0.95 Precision@0.96 Recall@0.96 F1@0.96 Accuracy@0.96 Precision@0.97 Recall@0.97 F1@0.97 Accuracy@0.97 Precision@0.98 Recall@0.98 F1@0.98 Accuracy@0.98 Precision@0.99 Recall@0.99 F1@0.99 Accuracy@0.99
1.1673 1.0 2436 0.1657 0.8037 0.9994 0.8909 0.8945 0.8203 0.9993 0.9010 0.9053 0.8287 0.9991 0.9060 0.9106 0.8359 0.9989 0.9101 0.9149 0.8403 0.9987 0.9127 0.9176 0.8450 0.9985 0.9153 0.9203 0.8501 0.9983 0.9183 0.9233 0.8540 0.9981 0.9204 0.9255 0.8574 0.9980 0.9224 0.9275 0.8616 0.9979 0.9247 0.9299 0.8640 0.9979 0.9261 0.9313 0.8666 0.9979 0.9276 0.9328 0.8694 0.9978 0.9291 0.9344 0.8711 0.9976 0.9301 0.9353 0.8732 0.9974 0.9312 0.9364 0.8752 0.9974 0.9323 0.9375 0.8772 0.9974 0.9335 0.9387 0.8786 0.9973 0.9342 0.9394 0.8801 0.9973 0.9350 0.9402 0.8812 0.9971 0.9356 0.9408 0.8824 0.9970 0.9362 0.9414 0.8844 0.9969 0.9373 0.9425 0.8854 0.9967 0.9378 0.9429 0.8861 0.9966 0.9381 0.9433 0.8865 0.9966 0.9383 0.9435 0.8871 0.9966 0.9387 0.9439 0.8883 0.9965 0.9393 0.9445 0.8895 0.9965 0.9400 0.9451 0.8898 0.9965 0.9401 0.9453 0.8913 0.9964 0.9409 0.9461 0.8919 0.9963 0.9412 0.9463 0.8930 0.9961 0.9418 0.9469 0.8940 0.9961 0.9423 0.9474 0.8949 0.9960 0.9427 0.9478 0.8953 0.9959 0.9429 0.9480 0.8961 0.9959 0.9434 0.9484 0.8969 0.9959 0.9438 0.9489 0.8977 0.9958 0.9442 0.9492 0.8981 0.9956 0.9443 0.9494 0.8988 0.9955 0.9447 0.9497 0.8997 0.9954 0.9451 0.9502 0.9006 0.9954 0.9456 0.9506 0.9011 0.9954 0.9459 0.9509 0.9014 0.9954 0.9461 0.9510 0.9023 0.9954 0.9466 0.9515 0.9026 0.9954 0.9467 0.9517 0.9032 0.9954 0.9471 0.9520 0.9036 0.9954 0.9473 0.9522 0.9045 0.9952 0.9477 0.9526 0.9047 0.9950 0.9477 0.9526 0.9053 0.9950 0.9480 0.9529 0.9063 0.9950 0.9486 0.9535 0.9068 0.9950 0.9489 0.9537 0.9076 0.9950 0.9493 0.9541 0.9081 0.9950 0.9495 0.9544 0.9088 0.9950 0.9499 0.9547 0.9089 0.9950 0.9500 0.9548 0.9093 0.9949 0.9502 0.9550 0.9098 0.9949 0.9504 0.9552 0.9103 0.9949 0.9507 0.9555 0.9106 0.9948 0.9508 0.9556 0.9116 0.9948 0.9514 0.9562 0.9120 0.9945 0.9515 0.9562 0.9126 0.9944 0.9517 0.9565 0.9129 0.9941 0.9518 0.9566 0.9135 0.9940 0.9521 0.9568 0.9144 0.9939 0.9525 0.9572 0.9149 0.9939 0.9527 0.9575 0.9152 0.9939 0.9529 0.9577 0.9158 0.9938 0.9532 0.9579 0.9159 0.9936 0.9532 0.9579 0.9169 0.9934 0.9536 0.9583 0.9175 0.9931 0.9538 0.9585 0.9180 0.9931 0.9541 0.9588 0.9188 0.9929 0.9544 0.9591 0.9198 0.9927 0.9549 0.9595 0.9209 0.9926 0.9554 0.9600 0.9216 0.9925 0.9557 0.9603 0.9223 0.9923 0.9560 0.9606 0.9239 0.9923 0.9569 0.9615 0.9247 0.9922 0.9573 0.9618 0.9251 0.9921 0.9575 0.9620 0.9264 0.9919 0.9580 0.9625 0.9272 0.9915 0.9583 0.9628 0.9285 0.9914 0.9589 0.9633 0.9294 0.9911 0.9593 0.9637 0.9306 0.9907 0.9597 0.9641 0.9316 0.9901 0.9599 0.9644 0.9324 0.9894 0.9600 0.9644 0.9338 0.9888 0.9605 0.9649 0.9359 0.9880 0.9612 0.9656 0.9380 0.9871 0.9619 0.9663 0.9407 0.9860 0.9628 0.9671 0.9436 0.9854 0.9640 0.9683 0.9471 0.9839 0.9652 0.9694 0.9521 0.9818 0.9667 0.9708 0.9577 0.9781 0.9678 0.9719 0.9653 0.9709 0.9681 0.9724 0.9751 0.9542 0.9645 0.9697
0.7107 2.0 4872 0.1609 0.9044 0.9943 0.9472 0.9522 0.9147 0.9927 0.9521 0.9570 0.9185 0.9916 0.9536 0.9584 0.9221 0.9911 0.9553 0.9600 0.9244 0.9905 0.9563 0.9610 0.9268 0.9898 0.9572 0.9618 0.9278 0.9895 0.9576 0.9622 0.9293 0.9894 0.9584 0.9629 0.9299 0.9891 0.9586 0.9631 0.9309 0.9889 0.9590 0.9635 0.9314 0.9885 0.9591 0.9637 0.9322 0.9884 0.9595 0.9640 0.9325 0.9884 0.9596 0.9641 0.9328 0.9883 0.9598 0.9643 0.9334 0.9882 0.9600 0.9645 0.9336 0.9882 0.9602 0.9646 0.9341 0.9881 0.9603 0.9648 0.9346 0.9880 0.9606 0.9650 0.9351 0.9880 0.9608 0.9652 0.9354 0.9875 0.9608 0.9652 0.9357 0.9874 0.9608 0.9653 0.9357 0.9873 0.9608 0.9653 0.9359 0.9873 0.9609 0.9654 0.9362 0.9872 0.9610 0.9655 0.9368 0.9871 0.9613 0.9657 0.9370 0.9871 0.9614 0.9658 0.9370 0.9870 0.9614 0.9658 0.9375 0.9870 0.9616 0.9660 0.9378 0.9870 0.9618 0.9662 0.9381 0.9869 0.9619 0.9663 0.9385 0.9869 0.9621 0.9665 0.9388 0.9868 0.9622 0.9666 0.9390 0.9867 0.9623 0.9666 0.9392 0.9866 0.9623 0.9667 0.9393 0.9865 0.9623 0.9667 0.9394 0.9865 0.9624 0.9667 0.9397 0.9865 0.9625 0.9669 0.9397 0.9864 0.9625 0.9668 0.9399 0.9862 0.9625 0.9668 0.9400 0.9862 0.9625 0.9669 0.9400 0.9861 0.9625 0.9669 0.9402 0.9861 0.9626 0.9670 0.9404 0.9860 0.9627 0.9670 0.9407 0.9858 0.9627 0.9671 0.9410 0.9857 0.9628 0.9672 0.9412 0.9856 0.9629 0.9672 0.9415 0.9856 0.9630 0.9674 0.9416 0.9855 0.9630 0.9674 0.9423 0.9854 0.9634 0.9677 0.9424 0.9853 0.9634 0.9677 0.9427 0.9852 0.9634 0.9678 0.9428 0.9850 0.9634 0.9678 0.9430 0.9849 0.9635 0.9678 0.9434 0.9848 0.9636 0.9679 0.9436 0.9847 0.9637 0.9680 0.9436 0.9847 0.9637 0.9680 0.9438 0.9847 0.9638 0.9681 0.9438 0.9846 0.9638 0.9681 0.9442 0.9844 0.9639 0.9682 0.9445 0.9844 0.9640 0.9683 0.9447 0.9843 0.9641 0.9684 0.9449 0.9843 0.9642 0.9685 0.9450 0.9840 0.9641 0.9684 0.9452 0.9838 0.9641 0.9684 0.9452 0.9838 0.9641 0.9684 0.9452 0.9837 0.9641 0.9684 0.9453 0.9834 0.9640 0.9683 0.9453 0.9833 0.9640 0.9683 0.9456 0.9832 0.9641 0.9684 0.9457 0.9832 0.9641 0.9684 0.9458 0.9831 0.9641 0.9684 0.9462 0.9830 0.9642 0.9686 0.9464 0.9829 0.9643 0.9686 0.9467 0.9825 0.9643 0.9686 0.9470 0.9824 0.9644 0.9687 0.9474 0.9822 0.9645 0.9688 0.9477 0.9820 0.9645 0.9689 0.9480 0.9816 0.9645 0.9688 0.9482 0.9815 0.9646 0.9689 0.9484 0.9814 0.9646 0.9689 0.9489 0.9812 0.9648 0.9691 0.9494 0.9807 0.9648 0.9691 0.9496 0.9805 0.9648 0.9691 0.9500 0.9803 0.9649 0.9692 0.9505 0.9800 0.9650 0.9693 0.9511 0.9794 0.9651 0.9694 0.9515 0.9790 0.9651 0.9694 0.9519 0.9787 0.9651 0.9695 0.9525 0.9782 0.9652 0.9696 0.9532 0.9776 0.9653 0.9697 0.9537 0.9772 0.9653 0.9697 0.9545 0.9772 0.9657 0.9701 0.9547 0.9769 0.9657 0.9701 0.9558 0.9763 0.9660 0.9703 0.9568 0.9755 0.9660 0.9704 0.9588 0.9736 0.9662 0.9706 0.9610 0.9712 0.9661 0.9706 0.9640 0.9680 0.9660 0.9706 0.9694 0.9621 0.9657 0.9705
0.2941 2.9991 7305 0.1709 0.9292 0.9890 0.9581 0.9627 0.9339 0.9873 0.9599 0.9644 0.9363 0.9867 0.9608 0.9653 0.9374 0.9866 0.9614 0.9658 0.9379 0.9865 0.9616 0.9660 0.9382 0.9862 0.9616 0.9660 0.9388 0.9859 0.9617 0.9662 0.9393 0.9859 0.9620 0.9664 0.9395 0.9858 0.9621 0.9665 0.9397 0.9857 0.9622 0.9666 0.9400 0.9856 0.9623 0.9667 0.9403 0.9856 0.9624 0.9668 0.9406 0.9855 0.9625 0.9669 0.9407 0.9855 0.9626 0.9670 0.9408 0.9855 0.9626 0.9670 0.9411 0.9855 0.9628 0.9671 0.9414 0.9853 0.9628 0.9672 0.9415 0.9852 0.9628 0.9672 0.9416 0.9850 0.9628 0.9672 0.9416 0.9850 0.9628 0.9672 0.9416 0.9849 0.9628 0.9671 0.9419 0.9849 0.9629 0.9673 0.9421 0.9849 0.9630 0.9674 0.9421 0.9849 0.9630 0.9674 0.9422 0.9846 0.9629 0.9673 0.9422 0.9846 0.9629 0.9673 0.9423 0.9846 0.9629 0.9673 0.9423 0.9845 0.9629 0.9673 0.9424 0.9844 0.9629 0.9673 0.9425 0.9843 0.9629 0.9673 0.9425 0.9843 0.9629 0.9673 0.9428 0.9841 0.9630 0.9674 0.9428 0.9840 0.9630 0.9674 0.9429 0.9839 0.9630 0.9674 0.9431 0.9838 0.9630 0.9674 0.9431 0.9838 0.9631 0.9674 0.9432 0.9837 0.9631 0.9674 0.9432 0.9837 0.9631 0.9674 0.9432 0.9837 0.9631 0.9674 0.9433 0.9836 0.9631 0.9674 0.9433 0.9835 0.9630 0.9674 0.9433 0.9835 0.9630 0.9674 0.9434 0.9834 0.9630 0.9674 0.9435 0.9834 0.9630 0.9674 0.9436 0.9832 0.9630 0.9674 0.9438 0.9832 0.9631 0.9675 0.9438 0.9831 0.9631 0.9675 0.9440 0.9831 0.9632 0.9676 0.9442 0.9831 0.9633 0.9677 0.9445 0.9830 0.9634 0.9678 0.9446 0.9829 0.9634 0.9678 0.9447 0.9829 0.9634 0.9678 0.9448 0.9828 0.9635 0.9678 0.9449 0.9827 0.9635 0.9678 0.9449 0.9827 0.9635 0.9678 0.9450 0.9826 0.9635 0.9678 0.9451 0.9826 0.9635 0.9679 0.9453 0.9826 0.9636 0.9680 0.9456 0.9826 0.9637 0.9681 0.9457 0.9825 0.9637 0.9681 0.9457 0.9825 0.9637 0.9681 0.9459 0.9824 0.9638 0.9682 0.9459 0.9824 0.9638 0.9682 0.9460 0.9824 0.9639 0.9682 0.9461 0.9824 0.9639 0.9683 0.9462 0.9822 0.9639 0.9682 0.9463 0.9822 0.9639 0.9683 0.9464 0.9820 0.9639 0.9682 0.9464 0.9817 0.9637 0.9681 0.9465 0.9817 0.9638 0.9682 0.9466 0.9817 0.9638 0.9682 0.9467 0.9816 0.9639 0.9682 0.9467 0.9816 0.9639 0.9682 0.9468 0.9815 0.9638 0.9682 0.9471 0.9815 0.9640 0.9684 0.9475 0.9815 0.9642 0.9686 0.9476 0.9815 0.9642 0.9686 0.9478 0.9813 0.9643 0.9686 0.9479 0.9812 0.9643 0.9686 0.9479 0.9812 0.9643 0.9686 0.9480 0.9811 0.9643 0.9686 0.9481 0.9809 0.9642 0.9686 0.9484 0.9809 0.9644 0.9687 0.9487 0.9807 0.9644 0.9688 0.9489 0.9806 0.9645 0.9689 0.9492 0.9805 0.9646 0.9689 0.9497 0.9805 0.9648 0.9692 0.9500 0.9801 0.9648 0.9692 0.9502 0.9798 0.9648 0.9691 0.9505 0.9797 0.9649 0.9692 0.9506 0.9794 0.9648 0.9692 0.9509 0.9792 0.9649 0.9693 0.9519 0.9790 0.9653 0.9696 0.9525 0.9782 0.9652 0.9696 0.9536 0.9774 0.9654 0.9697 0.9547 0.9761 0.9653 0.9697 0.9565 0.9745 0.9655 0.9699 0.9615 0.9707 0.9661 0.9706 0.9671 0.9612 0.9642 0.9692

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2,287
Safetensors
Model size
396M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kyle1668/answerdotai-ModernBERT-large_20241230-093521

Finetuned
(43)
this model