answerdotai-ModernBERT-large_20250111-224237
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3203
- Precision@0.01: 0.9384
- Recall@0.01: 0.9372
- F1@0.01: 0.9378
- Accuracy@0.01: 0.9558
- Precision@0.02: 0.9411
- Recall@0.02: 0.9359
- F1@0.02: 0.9385
- Accuracy@0.02: 0.9564
- Precision@0.03: 0.9417
- Recall@0.03: 0.9350
- F1@0.03: 0.9384
- Accuracy@0.03: 0.9563
- Precision@0.04: 0.9421
- Recall@0.04: 0.9349
- F1@0.04: 0.9385
- Accuracy@0.04: 0.9564
- Precision@0.05: 0.9429
- Recall@0.05: 0.9348
- F1@0.05: 0.9388
- Accuracy@0.05: 0.9567
- Precision@0.06: 0.9431
- Recall@0.06: 0.9348
- F1@0.06: 0.9389
- Accuracy@0.06: 0.9568
- Precision@0.07: 0.9432
- Recall@0.07: 0.9347
- F1@0.07: 0.9389
- Accuracy@0.07: 0.9568
- Precision@0.08: 0.9437
- Recall@0.08: 0.9345
- F1@0.08: 0.9391
- Accuracy@0.08: 0.9569
- Precision@0.09: 0.9437
- Recall@0.09: 0.9344
- F1@0.09: 0.9390
- Accuracy@0.09: 0.9569
- Precision@0.1: 0.9438
- Recall@0.1: 0.9343
- F1@0.1: 0.9391
- Accuracy@0.1: 0.9569
- Precision@0.11: 0.9439
- Recall@0.11: 0.9342
- F1@0.11: 0.9390
- Accuracy@0.11: 0.9569
- Precision@0.12: 0.9440
- Recall@0.12: 0.9339
- F1@0.12: 0.9389
- Accuracy@0.12: 0.9568
- Precision@0.13: 0.9442
- Recall@0.13: 0.9337
- F1@0.13: 0.9389
- Accuracy@0.13: 0.9568
- Precision@0.14: 0.9444
- Recall@0.14: 0.9334
- F1@0.14: 0.9389
- Accuracy@0.14: 0.9568
- Precision@0.15: 0.9448
- Recall@0.15: 0.9334
- F1@0.15: 0.9391
- Accuracy@0.15: 0.9570
- Precision@0.16: 0.9449
- Recall@0.16: 0.9334
- F1@0.16: 0.9391
- Accuracy@0.16: 0.9570
- Precision@0.17: 0.9450
- Recall@0.17: 0.9332
- F1@0.17: 0.9391
- Accuracy@0.17: 0.9570
- Precision@0.18: 0.9450
- Recall@0.18: 0.9332
- F1@0.18: 0.9391
- Accuracy@0.18: 0.9570
- Precision@0.19: 0.9452
- Recall@0.19: 0.9330
- F1@0.19: 0.9391
- Accuracy@0.19: 0.9570
- Precision@0.2: 0.9454
- Recall@0.2: 0.9330
- F1@0.2: 0.9392
- Accuracy@0.2: 0.9571
- Precision@0.21: 0.9455
- Recall@0.21: 0.9329
- F1@0.21: 0.9392
- Accuracy@0.21: 0.9571
- Precision@0.22: 0.9455
- Recall@0.22: 0.9328
- F1@0.22: 0.9391
- Accuracy@0.22: 0.9570
- Precision@0.23: 0.9455
- Recall@0.23: 0.9328
- F1@0.23: 0.9391
- Accuracy@0.23: 0.9570
- Precision@0.24: 0.9456
- Recall@0.24: 0.9328
- F1@0.24: 0.9391
- Accuracy@0.24: 0.9570
- Precision@0.25: 0.9456
- Recall@0.25: 0.9328
- F1@0.25: 0.9391
- Accuracy@0.25: 0.9570
- Precision@0.26: 0.9457
- Recall@0.26: 0.9327
- F1@0.26: 0.9391
- Accuracy@0.26: 0.9570
- Precision@0.27: 0.9458
- Recall@0.27: 0.9326
- F1@0.27: 0.9392
- Accuracy@0.27: 0.9571
- Precision@0.28: 0.9459
- Recall@0.28: 0.9326
- F1@0.28: 0.9392
- Accuracy@0.28: 0.9571
- Precision@0.29: 0.9460
- Recall@0.29: 0.9326
- F1@0.29: 0.9392
- Accuracy@0.29: 0.9571
- Precision@0.3: 0.9461
- Recall@0.3: 0.9325
- F1@0.3: 0.9392
- Accuracy@0.3: 0.9571
- Precision@0.31: 0.9462
- Recall@0.31: 0.9325
- F1@0.31: 0.9393
- Accuracy@0.31: 0.9572
- Precision@0.32: 0.9462
- Recall@0.32: 0.9325
- F1@0.32: 0.9393
- Accuracy@0.32: 0.9572
- Precision@0.33: 0.9464
- Recall@0.33: 0.9325
- F1@0.33: 0.9394
- Accuracy@0.33: 0.9572
- Precision@0.34: 0.9465
- Recall@0.34: 0.9324
- F1@0.34: 0.9394
- Accuracy@0.34: 0.9572
- Precision@0.35: 0.9464
- Recall@0.35: 0.9323
- F1@0.35: 0.9393
- Accuracy@0.35: 0.9572
- Precision@0.36: 0.9467
- Recall@0.36: 0.9323
- F1@0.36: 0.9394
- Accuracy@0.36: 0.9573
- Precision@0.37: 0.9467
- Recall@0.37: 0.9323
- F1@0.37: 0.9394
- Accuracy@0.37: 0.9573
- Precision@0.38: 0.9467
- Recall@0.38: 0.9322
- F1@0.38: 0.9394
- Accuracy@0.38: 0.9573
- Precision@0.39: 0.9467
- Recall@0.39: 0.9322
- F1@0.39: 0.9394
- Accuracy@0.39: 0.9573
- Precision@0.4: 0.9467
- Recall@0.4: 0.9321
- F1@0.4: 0.9393
- Accuracy@0.4: 0.9572
- Precision@0.41: 0.9467
- Recall@0.41: 0.9321
- F1@0.41: 0.9393
- Accuracy@0.41: 0.9572
- Precision@0.42: 0.9467
- Recall@0.42: 0.9321
- F1@0.42: 0.9393
- Accuracy@0.42: 0.9572
- Precision@0.43: 0.9468
- Recall@0.43: 0.9320
- F1@0.43: 0.9393
- Accuracy@0.43: 0.9572
- Precision@0.44: 0.9470
- Recall@0.44: 0.9319
- F1@0.44: 0.9394
- Accuracy@0.44: 0.9573
- Precision@0.45: 0.9469
- Recall@0.45: 0.9317
- F1@0.45: 0.9393
- Accuracy@0.45: 0.9572
- Precision@0.46: 0.9469
- Recall@0.46: 0.9317
- F1@0.46: 0.9393
- Accuracy@0.46: 0.9572
- Precision@0.47: 0.9469
- Recall@0.47: 0.9317
- F1@0.47: 0.9393
- Accuracy@0.47: 0.9572
- Precision@0.48: 0.9470
- Recall@0.48: 0.9317
- F1@0.48: 0.9393
- Accuracy@0.48: 0.9572
- Precision@0.49: 0.9471
- Recall@0.49: 0.9316
- F1@0.49: 0.9393
- Accuracy@0.49: 0.9572
- Precision@0.5: 0.9471
- Recall@0.5: 0.9316
- F1@0.5: 0.9393
- Accuracy@0.5: 0.9572
- Precision@0.51: 0.9471
- Recall@0.51: 0.9316
- F1@0.51: 0.9393
- Accuracy@0.51: 0.9572
- Precision@0.52: 0.9472
- Recall@0.52: 0.9316
- F1@0.52: 0.9393
- Accuracy@0.52: 0.9572
- Precision@0.53: 0.9473
- Recall@0.53: 0.9314
- F1@0.53: 0.9393
- Accuracy@0.53: 0.9572
- Precision@0.54: 0.9473
- Recall@0.54: 0.9314
- F1@0.54: 0.9393
- Accuracy@0.54: 0.9572
- Precision@0.55: 0.9474
- Recall@0.55: 0.9314
- F1@0.55: 0.9393
- Accuracy@0.55: 0.9572
- Precision@0.56: 0.9474
- Recall@0.56: 0.9312
- F1@0.56: 0.9392
- Accuracy@0.56: 0.9572
- Precision@0.57: 0.9474
- Recall@0.57: 0.9312
- F1@0.57: 0.9392
- Accuracy@0.57: 0.9572
- Precision@0.58: 0.9473
- Recall@0.58: 0.9310
- F1@0.58: 0.9391
- Accuracy@0.58: 0.9571
- Precision@0.59: 0.9473
- Recall@0.59: 0.9310
- F1@0.59: 0.9391
- Accuracy@0.59: 0.9571
- Precision@0.6: 0.9474
- Recall@0.6: 0.9310
- F1@0.6: 0.9392
- Accuracy@0.6: 0.9571
- Precision@0.61: 0.9474
- Recall@0.61: 0.9310
- F1@0.61: 0.9392
- Accuracy@0.61: 0.9571
- Precision@0.62: 0.9475
- Recall@0.62: 0.9309
- F1@0.62: 0.9391
- Accuracy@0.62: 0.9571
- Precision@0.63: 0.9476
- Recall@0.63: 0.9307
- F1@0.63: 0.9391
- Accuracy@0.63: 0.9571
- Precision@0.64: 0.9476
- Recall@0.64: 0.9306
- F1@0.64: 0.9390
- Accuracy@0.64: 0.9571
- Precision@0.65: 0.9477
- Recall@0.65: 0.9306
- F1@0.65: 0.9390
- Accuracy@0.65: 0.9571
- Precision@0.66: 0.9477
- Recall@0.66: 0.9306
- F1@0.66: 0.9390
- Accuracy@0.66: 0.9571
- Precision@0.67: 0.9477
- Recall@0.67: 0.9304
- F1@0.67: 0.9389
- Accuracy@0.67: 0.9570
- Precision@0.68: 0.9478
- Recall@0.68: 0.9304
- F1@0.68: 0.9390
- Accuracy@0.68: 0.9570
- Precision@0.69: 0.9477
- Recall@0.69: 0.9302
- F1@0.69: 0.9389
- Accuracy@0.69: 0.9570
- Precision@0.7: 0.9479
- Recall@0.7: 0.9302
- F1@0.7: 0.9390
- Accuracy@0.7: 0.9570
- Precision@0.71: 0.9479
- Recall@0.71: 0.9301
- F1@0.71: 0.9389
- Accuracy@0.71: 0.9570
- Precision@0.72: 0.9480
- Recall@0.72: 0.9299
- F1@0.72: 0.9389
- Accuracy@0.72: 0.9570
- Precision@0.73: 0.9481
- Recall@0.73: 0.9299
- F1@0.73: 0.9389
- Accuracy@0.73: 0.9570
- Precision@0.74: 0.9481
- Recall@0.74: 0.9299
- F1@0.74: 0.9389
- Accuracy@0.74: 0.9570
- Precision@0.75: 0.9482
- Recall@0.75: 0.9299
- F1@0.75: 0.9390
- Accuracy@0.75: 0.9570
- Precision@0.76: 0.9482
- Recall@0.76: 0.9299
- F1@0.76: 0.9390
- Accuracy@0.76: 0.9570
- Precision@0.77: 0.9483
- Recall@0.77: 0.9298
- F1@0.77: 0.9389
- Accuracy@0.77: 0.9570
- Precision@0.78: 0.9483
- Recall@0.78: 0.9297
- F1@0.78: 0.9389
- Accuracy@0.78: 0.9570
- Precision@0.79: 0.9484
- Recall@0.79: 0.9297
- F1@0.79: 0.9390
- Accuracy@0.79: 0.9571
- Precision@0.8: 0.9485
- Recall@0.8: 0.9296
- F1@0.8: 0.9390
- Accuracy@0.8: 0.9571
- Precision@0.81: 0.9485
- Recall@0.81: 0.9294
- F1@0.81: 0.9389
- Accuracy@0.81: 0.9570
- Precision@0.82: 0.9485
- Recall@0.82: 0.9294
- F1@0.82: 0.9389
- Accuracy@0.82: 0.9570
- Precision@0.83: 0.9486
- Recall@0.83: 0.9294
- F1@0.83: 0.9389
- Accuracy@0.83: 0.9570
- Precision@0.84: 0.9488
- Recall@0.84: 0.9294
- F1@0.84: 0.9390
- Accuracy@0.84: 0.9571
- Precision@0.85: 0.9491
- Recall@0.85: 0.9293
- F1@0.85: 0.9391
- Accuracy@0.85: 0.9572
- Precision@0.86: 0.9495
- Recall@0.86: 0.9293
- F1@0.86: 0.9393
- Accuracy@0.86: 0.9573
- Precision@0.87: 0.9495
- Recall@0.87: 0.9292
- F1@0.87: 0.9392
- Accuracy@0.87: 0.9573
- Precision@0.88: 0.9496
- Recall@0.88: 0.9292
- F1@0.88: 0.9393
- Accuracy@0.88: 0.9573
- Precision@0.89: 0.9497
- Recall@0.89: 0.9290
- F1@0.89: 0.9392
- Accuracy@0.89: 0.9573
- Precision@0.9: 0.9499
- Recall@0.9: 0.9289
- F1@0.9: 0.9393
- Accuracy@0.9: 0.9573
- Precision@0.91: 0.9501
- Recall@0.91: 0.9287
- F1@0.91: 0.9393
- Accuracy@0.91: 0.9573
- Precision@0.92: 0.9503
- Recall@0.92: 0.9287
- F1@0.92: 0.9394
- Accuracy@0.92: 0.9574
- Precision@0.93: 0.9507
- Recall@0.93: 0.9285
- F1@0.93: 0.9395
- Accuracy@0.93: 0.9575
- Precision@0.94: 0.9509
- Recall@0.94: 0.9283
- F1@0.94: 0.9394
- Accuracy@0.94: 0.9575
- Precision@0.95: 0.9512
- Recall@0.95: 0.9281
- F1@0.95: 0.9395
- Accuracy@0.95: 0.9575
- Precision@0.96: 0.9515
- Recall@0.96: 0.9277
- F1@0.96: 0.9395
- Accuracy@0.96: 0.9575
- Precision@0.97: 0.9520
- Recall@0.97: 0.9270
- F1@0.97: 0.9393
- Accuracy@0.97: 0.9575
- Precision@0.98: 0.9525
- Recall@0.98: 0.9267
- F1@0.98: 0.9394
- Accuracy@0.98: 0.9575
- Precision@0.99: 0.9537
- Recall@0.99: 0.9246
- F1@0.99: 0.9389
- Accuracy@0.99: 0.9573
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision@0.01 | Recall@0.01 | F1@0.01 | Accuracy@0.01 | Precision@0.02 | Recall@0.02 | F1@0.02 | Accuracy@0.02 | Precision@0.03 | Recall@0.03 | F1@0.03 | Accuracy@0.03 | Precision@0.04 | Recall@0.04 | F1@0.04 | Accuracy@0.04 | Precision@0.05 | Recall@0.05 | F1@0.05 | Accuracy@0.05 | Precision@0.06 | Recall@0.06 | F1@0.06 | Accuracy@0.06 | Precision@0.07 | Recall@0.07 | F1@0.07 | Accuracy@0.07 | Precision@0.08 | Recall@0.08 | F1@0.08 | Accuracy@0.08 | Precision@0.09 | Recall@0.09 | F1@0.09 | Accuracy@0.09 | Precision@0.1 | Recall@0.1 | F1@0.1 | Accuracy@0.1 | Precision@0.11 | Recall@0.11 | F1@0.11 | Accuracy@0.11 | Precision@0.12 | Recall@0.12 | F1@0.12 | Accuracy@0.12 | Precision@0.13 | Recall@0.13 | F1@0.13 | Accuracy@0.13 | Precision@0.14 | Recall@0.14 | F1@0.14 | Accuracy@0.14 | Precision@0.15 | Recall@0.15 | F1@0.15 | Accuracy@0.15 | Precision@0.16 | Recall@0.16 | F1@0.16 | Accuracy@0.16 | Precision@0.17 | Recall@0.17 | F1@0.17 | Accuracy@0.17 | Precision@0.18 | Recall@0.18 | F1@0.18 | Accuracy@0.18 | Precision@0.19 | Recall@0.19 | F1@0.19 | Accuracy@0.19 | Precision@0.2 | Recall@0.2 | F1@0.2 | Accuracy@0.2 | Precision@0.21 | Recall@0.21 | F1@0.21 | Accuracy@0.21 | Precision@0.22 | Recall@0.22 | F1@0.22 | Accuracy@0.22 | Precision@0.23 | Recall@0.23 | F1@0.23 | Accuracy@0.23 | Precision@0.24 | Recall@0.24 | F1@0.24 | Accuracy@0.24 | Precision@0.25 | Recall@0.25 | F1@0.25 | Accuracy@0.25 | Precision@0.26 | Recall@0.26 | F1@0.26 | Accuracy@0.26 | Precision@0.27 | Recall@0.27 | F1@0.27 | Accuracy@0.27 | Precision@0.28 | Recall@0.28 | F1@0.28 | Accuracy@0.28 | Precision@0.29 | Recall@0.29 | F1@0.29 | Accuracy@0.29 | Precision@0.3 | Recall@0.3 | F1@0.3 | Accuracy@0.3 | Precision@0.31 | Recall@0.31 | F1@0.31 | Accuracy@0.31 | Precision@0.32 | Recall@0.32 | F1@0.32 | Accuracy@0.32 | Precision@0.33 | Recall@0.33 | F1@0.33 | Accuracy@0.33 | Precision@0.34 | Recall@0.34 | F1@0.34 | Accuracy@0.34 | Precision@0.35 | Recall@0.35 | F1@0.35 | Accuracy@0.35 | Precision@0.36 | Recall@0.36 | F1@0.36 | Accuracy@0.36 | Precision@0.37 | Recall@0.37 | F1@0.37 | Accuracy@0.37 | Precision@0.38 | Recall@0.38 | F1@0.38 | Accuracy@0.38 | Precision@0.39 | Recall@0.39 | F1@0.39 | Accuracy@0.39 | Precision@0.4 | Recall@0.4 | F1@0.4 | Accuracy@0.4 | Precision@0.41 | Recall@0.41 | F1@0.41 | Accuracy@0.41 | Precision@0.42 | Recall@0.42 | F1@0.42 | Accuracy@0.42 | Precision@0.43 | Recall@0.43 | F1@0.43 | Accuracy@0.43 | Precision@0.44 | Recall@0.44 | F1@0.44 | Accuracy@0.44 | Precision@0.45 | Recall@0.45 | F1@0.45 | Accuracy@0.45 | Precision@0.46 | Recall@0.46 | F1@0.46 | Accuracy@0.46 | Precision@0.47 | Recall@0.47 | F1@0.47 | Accuracy@0.47 | Precision@0.48 | Recall@0.48 | F1@0.48 | Accuracy@0.48 | Precision@0.49 | Recall@0.49 | F1@0.49 | Accuracy@0.49 | Precision@0.5 | Recall@0.5 | F1@0.5 | Accuracy@0.5 | Precision@0.51 | Recall@0.51 | F1@0.51 | Accuracy@0.51 | Precision@0.52 | Recall@0.52 | F1@0.52 | Accuracy@0.52 | Precision@0.53 | Recall@0.53 | F1@0.53 | Accuracy@0.53 | Precision@0.54 | Recall@0.54 | F1@0.54 | Accuracy@0.54 | Precision@0.55 | Recall@0.55 | F1@0.55 | Accuracy@0.55 | Precision@0.56 | Recall@0.56 | F1@0.56 | Accuracy@0.56 | Precision@0.57 | Recall@0.57 | F1@0.57 | Accuracy@0.57 | Precision@0.58 | Recall@0.58 | F1@0.58 | Accuracy@0.58 | Precision@0.59 | Recall@0.59 | F1@0.59 | Accuracy@0.59 | Precision@0.6 | Recall@0.6 | F1@0.6 | Accuracy@0.6 | Precision@0.61 | Recall@0.61 | F1@0.61 | Accuracy@0.61 | Precision@0.62 | Recall@0.62 | F1@0.62 | Accuracy@0.62 | Precision@0.63 | Recall@0.63 | F1@0.63 | Accuracy@0.63 | Precision@0.64 | Recall@0.64 | F1@0.64 | Accuracy@0.64 | Precision@0.65 | Recall@0.65 | F1@0.65 | Accuracy@0.65 | Precision@0.66 | Recall@0.66 | F1@0.66 | Accuracy@0.66 | Precision@0.67 | Recall@0.67 | F1@0.67 | Accuracy@0.67 | Precision@0.68 | Recall@0.68 | F1@0.68 | Accuracy@0.68 | Precision@0.69 | Recall@0.69 | F1@0.69 | Accuracy@0.69 | Precision@0.7 | Recall@0.7 | F1@0.7 | Accuracy@0.7 | Precision@0.71 | Recall@0.71 | F1@0.71 | Accuracy@0.71 | Precision@0.72 | Recall@0.72 | F1@0.72 | Accuracy@0.72 | Precision@0.73 | Recall@0.73 | F1@0.73 | Accuracy@0.73 | Precision@0.74 | Recall@0.74 | F1@0.74 | Accuracy@0.74 | Precision@0.75 | Recall@0.75 | F1@0.75 | Accuracy@0.75 | Precision@0.76 | Recall@0.76 | F1@0.76 | Accuracy@0.76 | Precision@0.77 | Recall@0.77 | F1@0.77 | Accuracy@0.77 | Precision@0.78 | Recall@0.78 | F1@0.78 | Accuracy@0.78 | Precision@0.79 | Recall@0.79 | F1@0.79 | Accuracy@0.79 | Precision@0.8 | Recall@0.8 | F1@0.8 | Accuracy@0.8 | Precision@0.81 | Recall@0.81 | F1@0.81 | Accuracy@0.81 | Precision@0.82 | Recall@0.82 | F1@0.82 | Accuracy@0.82 | Precision@0.83 | Recall@0.83 | F1@0.83 | Accuracy@0.83 | Precision@0.84 | Recall@0.84 | F1@0.84 | Accuracy@0.84 | Precision@0.85 | Recall@0.85 | F1@0.85 | Accuracy@0.85 | Precision@0.86 | Recall@0.86 | F1@0.86 | Accuracy@0.86 | Precision@0.87 | Recall@0.87 | F1@0.87 | Accuracy@0.87 | Precision@0.88 | Recall@0.88 | F1@0.88 | Accuracy@0.88 | Precision@0.89 | Recall@0.89 | F1@0.89 | Accuracy@0.89 | Precision@0.9 | Recall@0.9 | F1@0.9 | Accuracy@0.9 | Precision@0.91 | Recall@0.91 | F1@0.91 | Accuracy@0.91 | Precision@0.92 | Recall@0.92 | F1@0.92 | Accuracy@0.92 | Precision@0.93 | Recall@0.93 | F1@0.93 | Accuracy@0.93 | Precision@0.94 | Recall@0.94 | F1@0.94 | Accuracy@0.94 | Precision@0.95 | Recall@0.95 | F1@0.95 | Accuracy@0.95 | Precision@0.96 | Recall@0.96 | F1@0.96 | Accuracy@0.96 | Precision@0.97 | Recall@0.97 | F1@0.97 | Accuracy@0.97 | Precision@0.98 | Recall@0.98 | F1@0.98 | Accuracy@0.98 | Precision@0.99 | Recall@0.99 | F1@0.99 | Accuracy@0.99 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.8618 | 1.0 | 4160 | 0.1579 | 0.6785 | 0.9929 | 0.8061 | 0.8303 | 0.7597 | 0.9835 | 0.8573 | 0.8836 | 0.7958 | 0.9772 | 0.8772 | 0.9028 | 0.8144 | 0.9734 | 0.8868 | 0.9117 | 0.8279 | 0.9710 | 0.8938 | 0.9180 | 0.8403 | 0.9684 | 0.8998 | 0.9234 | 0.8481 | 0.9660 | 0.9032 | 0.9264 | 0.8546 | 0.9641 | 0.9061 | 0.9290 | 0.8602 | 0.9631 | 0.9088 | 0.9313 | 0.8649 | 0.9617 | 0.9107 | 0.9330 | 0.8691 | 0.9604 | 0.9125 | 0.9345 | 0.8721 | 0.9593 | 0.9136 | 0.9355 | 0.8747 | 0.9579 | 0.9144 | 0.9363 | 0.8774 | 0.9571 | 0.9155 | 0.9372 | 0.8802 | 0.9561 | 0.9166 | 0.9382 | 0.8830 | 0.9556 | 0.9179 | 0.9392 | 0.8854 | 0.9552 | 0.9190 | 0.9402 | 0.8873 | 0.9543 | 0.9196 | 0.9407 | 0.8891 | 0.9537 | 0.9202 | 0.9412 | 0.8909 | 0.9534 | 0.9211 | 0.9419 | 0.8926 | 0.9525 | 0.9216 | 0.9424 | 0.8944 | 0.9521 | 0.9224 | 0.9430 | 0.8955 | 0.9513 | 0.9225 | 0.9432 | 0.8965 | 0.9502 | 0.9225 | 0.9433 | 0.8969 | 0.9496 | 0.9225 | 0.9433 | 0.8982 | 0.9484 | 0.9226 | 0.9435 | 0.8993 | 0.9475 | 0.9228 | 0.9437 | 0.9004 | 0.9469 | 0.9230 | 0.9439 | 0.9019 | 0.9467 | 0.9237 | 0.9444 | 0.9034 | 0.9461 | 0.9243 | 0.9449 | 0.9047 | 0.9454 | 0.9246 | 0.9452 | 0.9056 | 0.9450 | 0.9248 | 0.9454 | 0.9065 | 0.9446 | 0.9252 | 0.9457 | 0.9074 | 0.9440 | 0.9254 | 0.9459 | 0.9085 | 0.9438 | 0.9258 | 0.9462 | 0.9093 | 0.9433 | 0.9260 | 0.9464 | 0.9100 | 0.9428 | 0.9261 | 0.9466 | 0.9109 | 0.9423 | 0.9263 | 0.9467 | 0.9118 | 0.9418 | 0.9266 | 0.9470 | 0.9124 | 0.9417 | 0.9268 | 0.9472 | 0.9130 | 0.9412 | 0.9269 | 0.9472 | 0.9140 | 0.9406 | 0.9271 | 0.9474 | 0.9146 | 0.9398 | 0.9271 | 0.9474 | 0.9158 | 0.9396 | 0.9275 | 0.9478 | 0.9170 | 0.9392 | 0.9279 | 0.9482 | 0.9177 | 0.9387 | 0.9281 | 0.9483 | 0.9185 | 0.9383 | 0.9283 | 0.9485 | 0.9193 | 0.9376 | 0.9284 | 0.9486 | 0.9200 | 0.9370 | 0.9284 | 0.9487 | 0.9206 | 0.9367 | 0.9286 | 0.9488 | 0.9214 | 0.9363 | 0.9288 | 0.9490 | 0.9219 | 0.9356 | 0.9287 | 0.9489 | 0.9224 | 0.9352 | 0.9288 | 0.9490 | 0.9228 | 0.9350 | 0.9289 | 0.9491 | 0.9234 | 0.9350 | 0.9292 | 0.9494 | 0.9241 | 0.9345 | 0.9293 | 0.9494 | 0.9250 | 0.9341 | 0.9295 | 0.9497 | 0.9256 | 0.9339 | 0.9298 | 0.9499 | 0.9269 | 0.9336 | 0.9302 | 0.9502 | 0.9273 | 0.9331 | 0.9302 | 0.9502 | 0.9276 | 0.9323 | 0.9299 | 0.9501 | 0.9284 | 0.9318 | 0.9301 | 0.9502 | 0.9290 | 0.9313 | 0.9301 | 0.9503 | 0.9296 | 0.9309 | 0.9303 | 0.9504 | 0.9306 | 0.9307 | 0.9307 | 0.9507 | 0.9320 | 0.9302 | 0.9311 | 0.9511 | 0.9327 | 0.9293 | 0.9310 | 0.9510 | 0.9333 | 0.9288 | 0.9310 | 0.9511 | 0.9340 | 0.9281 | 0.9310 | 0.9511 | 0.9347 | 0.9273 | 0.9310 | 0.9512 | 0.9354 | 0.9263 | 0.9309 | 0.9511 | 0.9364 | 0.9260 | 0.9311 | 0.9513 | 0.9373 | 0.9250 | 0.9311 | 0.9514 | 0.9383 | 0.9242 | 0.9312 | 0.9515 | 0.9392 | 0.9235 | 0.9313 | 0.9516 | 0.9402 | 0.9230 | 0.9315 | 0.9518 | 0.9410 | 0.9218 | 0.9313 | 0.9517 | 0.9421 | 0.9204 | 0.9311 | 0.9516 | 0.9428 | 0.9198 | 0.9312 | 0.9517 | 0.9439 | 0.9192 | 0.9314 | 0.9519 | 0.9448 | 0.9179 | 0.9312 | 0.9518 | 0.9460 | 0.9164 | 0.9310 | 0.9517 | 0.9479 | 0.9152 | 0.9313 | 0.9520 | 0.9493 | 0.9140 | 0.9313 | 0.9521 | 0.9504 | 0.9125 | 0.9311 | 0.9520 | 0.9517 | 0.9101 | 0.9304 | 0.9516 | 0.9529 | 0.9085 | 0.9302 | 0.9515 | 0.9542 | 0.9062 | 0.9296 | 0.9512 | 0.9555 | 0.9041 | 0.9291 | 0.9510 | 0.9566 | 0.9028 | 0.9289 | 0.9509 | 0.9577 | 0.9005 | 0.9282 | 0.9505 | 0.9600 | 0.8975 | 0.9277 | 0.9503 | 0.9620 | 0.8948 | 0.9272 | 0.9501 | 0.9639 | 0.89 | 0.9255 | 0.9491 | 0.9662 | 0.8857 | 0.9242 | 0.9484 | 0.9697 | 0.8790 | 0.9221 | 0.9472 | 0.9744 | 0.8685 | 0.9184 | 0.9452 | 0.9794 | 0.8508 | 0.9106 | 0.9406 | 0.9860 | 0.8112 | 0.8901 | 0.9288 |
3.574 | 2.0 | 8320 | 0.2679 | 0.9139 | 0.9550 | 0.9340 | 0.9520 | 0.9191 | 0.9520 | 0.9352 | 0.9531 | 0.9225 | 0.9505 | 0.9363 | 0.9540 | 0.9246 | 0.9493 | 0.9368 | 0.9545 | 0.9251 | 0.9479 | 0.9364 | 0.9542 | 0.9262 | 0.9472 | 0.9365 | 0.9544 | 0.9271 | 0.9468 | 0.9368 | 0.9546 | 0.9282 | 0.9463 | 0.9372 | 0.9549 | 0.9284 | 0.9460 | 0.9371 | 0.9549 | 0.9287 | 0.9453 | 0.9369 | 0.9548 | 0.9293 | 0.9449 | 0.9370 | 0.9549 | 0.9298 | 0.9449 | 0.9373 | 0.9550 | 0.9301 | 0.9445 | 0.9372 | 0.9550 | 0.9302 | 0.9440 | 0.9371 | 0.9549 | 0.9304 | 0.9437 | 0.9370 | 0.9549 | 0.9304 | 0.9435 | 0.9369 | 0.9548 | 0.9308 | 0.9434 | 0.9370 | 0.9549 | 0.9312 | 0.9432 | 0.9371 | 0.9550 | 0.9312 | 0.9431 | 0.9371 | 0.9550 | 0.9314 | 0.9429 | 0.9371 | 0.9550 | 0.9316 | 0.9428 | 0.9372 | 0.9551 | 0.9317 | 0.9428 | 0.9372 | 0.9551 | 0.9317 | 0.9423 | 0.9370 | 0.9549 | 0.9319 | 0.9421 | 0.9370 | 0.9550 | 0.9321 | 0.9421 | 0.9371 | 0.9550 | 0.9321 | 0.9420 | 0.9370 | 0.9550 | 0.9324 | 0.9420 | 0.9372 | 0.9551 | 0.9327 | 0.9419 | 0.9373 | 0.9552 | 0.9328 | 0.9418 | 0.9373 | 0.9552 | 0.9329 | 0.9418 | 0.9374 | 0.9553 | 0.9329 | 0.9417 | 0.9373 | 0.9552 | 0.9330 | 0.9415 | 0.9372 | 0.9552 | 0.9333 | 0.9412 | 0.9372 | 0.9552 | 0.9336 | 0.9409 | 0.9372 | 0.9552 | 0.9336 | 0.9409 | 0.9373 | 0.9552 | 0.9337 | 0.9408 | 0.9373 | 0.9552 | 0.9339 | 0.9408 | 0.9373 | 0.9553 | 0.9340 | 0.9407 | 0.9373 | 0.9553 | 0.9343 | 0.9406 | 0.9375 | 0.9554 | 0.9344 | 0.9405 | 0.9374 | 0.9554 | 0.9345 | 0.9404 | 0.9374 | 0.9554 | 0.9345 | 0.9402 | 0.9373 | 0.9553 | 0.9349 | 0.94 | 0.9374 | 0.9554 | 0.9353 | 0.9399 | 0.9376 | 0.9555 | 0.9356 | 0.9399 | 0.9378 | 0.9557 | 0.9356 | 0.9395 | 0.9376 | 0.9555 | 0.9357 | 0.9395 | 0.9376 | 0.9556 | 0.9358 | 0.9390 | 0.9374 | 0.9554 | 0.9360 | 0.9388 | 0.9374 | 0.9554 | 0.9360 | 0.9385 | 0.9373 | 0.9554 | 0.9363 | 0.9384 | 0.9374 | 0.9554 | 0.9364 | 0.9384 | 0.9374 | 0.9555 | 0.9366 | 0.9384 | 0.9375 | 0.9555 | 0.9366 | 0.9384 | 0.9375 | 0.9556 | 0.9368 | 0.9383 | 0.9376 | 0.9556 | 0.9370 | 0.9383 | 0.9377 | 0.9557 | 0.9374 | 0.9383 | 0.9379 | 0.9558 | 0.9374 | 0.9382 | 0.9378 | 0.9558 | 0.9374 | 0.9382 | 0.9378 | 0.9558 | 0.9374 | 0.9382 | 0.9378 | 0.9558 | 0.9375 | 0.9382 | 0.9378 | 0.9558 | 0.9376 | 0.9382 | 0.9379 | 0.9558 | 0.9379 | 0.9380 | 0.9379 | 0.9559 | 0.9381 | 0.9379 | 0.9380 | 0.9559 | 0.9381 | 0.9377 | 0.9379 | 0.9559 | 0.9383 | 0.9375 | 0.9379 | 0.9559 | 0.9386 | 0.9375 | 0.9380 | 0.9560 | 0.9387 | 0.9372 | 0.9379 | 0.9559 | 0.9387 | 0.9372 | 0.9379 | 0.9559 | 0.9388 | 0.9370 | 0.9379 | 0.9559 | 0.9389 | 0.9368 | 0.9378 | 0.9559 | 0.9391 | 0.9368 | 0.9380 | 0.9560 | 0.9393 | 0.9364 | 0.9378 | 0.9559 | 0.9393 | 0.9364 | 0.9378 | 0.9559 | 0.9393 | 0.9363 | 0.9378 | 0.9559 | 0.9396 | 0.9361 | 0.9378 | 0.9559 | 0.9398 | 0.9360 | 0.9379 | 0.9560 | 0.9404 | 0.9360 | 0.9382 | 0.9562 | 0.9407 | 0.9359 | 0.9383 | 0.9562 | 0.9409 | 0.9359 | 0.9384 | 0.9563 | 0.9410 | 0.9358 | 0.9384 | 0.9563 | 0.9411 | 0.9357 | 0.9384 | 0.9563 | 0.9413 | 0.9355 | 0.9384 | 0.9563 | 0.9413 | 0.9354 | 0.9383 | 0.9563 | 0.9420 | 0.9354 | 0.9387 | 0.9566 | 0.9423 | 0.9352 | 0.9388 | 0.9566 | 0.9428 | 0.9352 | 0.9390 | 0.9568 | 0.9432 | 0.9350 | 0.9391 | 0.9569 | 0.9438 | 0.9350 | 0.9393 | 0.9571 | 0.9442 | 0.9347 | 0.9394 | 0.9572 | 0.9449 | 0.9339 | 0.9394 | 0.9572 | 0.9454 | 0.9337 | 0.9395 | 0.9573 | 0.9459 | 0.9330 | 0.9394 | 0.9572 | 0.9463 | 0.9321 | 0.9392 | 0.9571 | 0.9469 | 0.9316 | 0.9392 | 0.9571 | 0.9481 | 0.9308 | 0.9394 | 0.9573 | 0.9491 | 0.9295 | 0.9392 | 0.9573 | 0.9501 | 0.9273 | 0.9386 | 0.9569 | 0.9549 | 0.9229 | 0.9387 | 0.9571 |
1.7597 | 2.9995 | 12477 | 0.3203 | 0.9384 | 0.9372 | 0.9378 | 0.9558 | 0.9411 | 0.9359 | 0.9385 | 0.9564 | 0.9417 | 0.9350 | 0.9384 | 0.9563 | 0.9421 | 0.9349 | 0.9385 | 0.9564 | 0.9429 | 0.9348 | 0.9388 | 0.9567 | 0.9431 | 0.9348 | 0.9389 | 0.9568 | 0.9432 | 0.9347 | 0.9389 | 0.9568 | 0.9437 | 0.9345 | 0.9391 | 0.9569 | 0.9437 | 0.9344 | 0.9390 | 0.9569 | 0.9438 | 0.9343 | 0.9391 | 0.9569 | 0.9439 | 0.9342 | 0.9390 | 0.9569 | 0.9440 | 0.9339 | 0.9389 | 0.9568 | 0.9442 | 0.9337 | 0.9389 | 0.9568 | 0.9444 | 0.9334 | 0.9389 | 0.9568 | 0.9448 | 0.9334 | 0.9391 | 0.9570 | 0.9449 | 0.9334 | 0.9391 | 0.9570 | 0.9450 | 0.9332 | 0.9391 | 0.9570 | 0.9450 | 0.9332 | 0.9391 | 0.9570 | 0.9452 | 0.9330 | 0.9391 | 0.9570 | 0.9454 | 0.9330 | 0.9392 | 0.9571 | 0.9455 | 0.9329 | 0.9392 | 0.9571 | 0.9455 | 0.9328 | 0.9391 | 0.9570 | 0.9455 | 0.9328 | 0.9391 | 0.9570 | 0.9456 | 0.9328 | 0.9391 | 0.9570 | 0.9456 | 0.9328 | 0.9391 | 0.9570 | 0.9457 | 0.9327 | 0.9391 | 0.9570 | 0.9458 | 0.9326 | 0.9392 | 0.9571 | 0.9459 | 0.9326 | 0.9392 | 0.9571 | 0.9460 | 0.9326 | 0.9392 | 0.9571 | 0.9461 | 0.9325 | 0.9392 | 0.9571 | 0.9462 | 0.9325 | 0.9393 | 0.9572 | 0.9462 | 0.9325 | 0.9393 | 0.9572 | 0.9464 | 0.9325 | 0.9394 | 0.9572 | 0.9465 | 0.9324 | 0.9394 | 0.9572 | 0.9464 | 0.9323 | 0.9393 | 0.9572 | 0.9467 | 0.9323 | 0.9394 | 0.9573 | 0.9467 | 0.9323 | 0.9394 | 0.9573 | 0.9467 | 0.9322 | 0.9394 | 0.9573 | 0.9467 | 0.9322 | 0.9394 | 0.9573 | 0.9467 | 0.9321 | 0.9393 | 0.9572 | 0.9467 | 0.9321 | 0.9393 | 0.9572 | 0.9467 | 0.9321 | 0.9393 | 0.9572 | 0.9468 | 0.9320 | 0.9393 | 0.9572 | 0.9470 | 0.9319 | 0.9394 | 0.9573 | 0.9469 | 0.9317 | 0.9393 | 0.9572 | 0.9469 | 0.9317 | 0.9393 | 0.9572 | 0.9469 | 0.9317 | 0.9393 | 0.9572 | 0.9470 | 0.9317 | 0.9393 | 0.9572 | 0.9471 | 0.9316 | 0.9393 | 0.9572 | 0.9471 | 0.9316 | 0.9393 | 0.9572 | 0.9471 | 0.9316 | 0.9393 | 0.9572 | 0.9472 | 0.9316 | 0.9393 | 0.9572 | 0.9473 | 0.9314 | 0.9393 | 0.9572 | 0.9473 | 0.9314 | 0.9393 | 0.9572 | 0.9474 | 0.9314 | 0.9393 | 0.9572 | 0.9474 | 0.9312 | 0.9392 | 0.9572 | 0.9474 | 0.9312 | 0.9392 | 0.9572 | 0.9473 | 0.9310 | 0.9391 | 0.9571 | 0.9473 | 0.9310 | 0.9391 | 0.9571 | 0.9474 | 0.9310 | 0.9392 | 0.9571 | 0.9474 | 0.9310 | 0.9392 | 0.9571 | 0.9475 | 0.9309 | 0.9391 | 0.9571 | 0.9476 | 0.9307 | 0.9391 | 0.9571 | 0.9476 | 0.9306 | 0.9390 | 0.9571 | 0.9477 | 0.9306 | 0.9390 | 0.9571 | 0.9477 | 0.9306 | 0.9390 | 0.9571 | 0.9477 | 0.9304 | 0.9389 | 0.9570 | 0.9478 | 0.9304 | 0.9390 | 0.9570 | 0.9477 | 0.9302 | 0.9389 | 0.9570 | 0.9479 | 0.9302 | 0.9390 | 0.9570 | 0.9479 | 0.9301 | 0.9389 | 0.9570 | 0.9480 | 0.9299 | 0.9389 | 0.9570 | 0.9481 | 0.9299 | 0.9389 | 0.9570 | 0.9481 | 0.9299 | 0.9389 | 0.9570 | 0.9482 | 0.9299 | 0.9390 | 0.9570 | 0.9482 | 0.9299 | 0.9390 | 0.9570 | 0.9483 | 0.9298 | 0.9389 | 0.9570 | 0.9483 | 0.9297 | 0.9389 | 0.9570 | 0.9484 | 0.9297 | 0.9390 | 0.9571 | 0.9485 | 0.9296 | 0.9390 | 0.9571 | 0.9485 | 0.9294 | 0.9389 | 0.9570 | 0.9485 | 0.9294 | 0.9389 | 0.9570 | 0.9486 | 0.9294 | 0.9389 | 0.9570 | 0.9488 | 0.9294 | 0.9390 | 0.9571 | 0.9491 | 0.9293 | 0.9391 | 0.9572 | 0.9495 | 0.9293 | 0.9393 | 0.9573 | 0.9495 | 0.9292 | 0.9392 | 0.9573 | 0.9496 | 0.9292 | 0.9393 | 0.9573 | 0.9497 | 0.9290 | 0.9392 | 0.9573 | 0.9499 | 0.9289 | 0.9393 | 0.9573 | 0.9501 | 0.9287 | 0.9393 | 0.9573 | 0.9503 | 0.9287 | 0.9394 | 0.9574 | 0.9507 | 0.9285 | 0.9395 | 0.9575 | 0.9509 | 0.9283 | 0.9394 | 0.9575 | 0.9512 | 0.9281 | 0.9395 | 0.9575 | 0.9515 | 0.9277 | 0.9395 | 0.9575 | 0.9520 | 0.9270 | 0.9393 | 0.9575 | 0.9525 | 0.9267 | 0.9394 | 0.9575 | 0.9537 | 0.9246 | 0.9389 | 0.9573 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 29
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kyle1668/answerdotai-ModernBERT-large_20250111-224237
Base model
answerdotai/ModernBERT-large