File size: 15,001 Bytes
2ab806d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from typing import Optional, Union

import numpy as np
import torch
import transformers

from .bahasa_config import BahasaConfig


class BahasaProcessor(transformers.ProcessorMixin):
    """
    Constructs an Bahasa processor which wraps an audio processor and a text_processor into a single processor.

    Args:
        audio_processor: The audio processor for the audio encoder.
        text_processor: The processor for the language model.
    """

    attributes = ["audio_processor", "text_processor"]
    audio_processor_class = (
        "Wav2Vec2Processor",
        "SeamlessM4TFeatureExtractor",
        "WhisperProcessor",
    )
    text_processor_class = (
        "PreTrainedTokenizer",
        "PreTrainedTokenizerFast",
        "MllamaProcessor",
    )

    tokenizer: transformers.PreTrainedTokenizerBase
    text_processor: Union[
        transformers.ProcessorMixin, transformers.PreTrainedTokenizerBase
    ]
    audio_processor: transformers.ProcessorMixin

    def __init__(
        self,
        audio_processor=None,
        text_processor=None,
        audio_padding: str = "longest",
        encoder_ds_factor: int = 320,
        stack_factor: int = 8,
        audio_placeholder: str = "<|audio|>",
    ):
        """
        Args:
            audio_processor: The audio processor for the audio encoder.
            text_processor: The processor for the language model.
            audio_padding: The padding strategy for the audio encoder.
            encoder_ds_factor: The downsample factor of the audio encoder.
            stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
            audio_placeholder: The placeholder for the audio in the text.
        """
        self.audio_padding = audio_padding
        self.encoder_ds_factor = encoder_ds_factor
        self.stack_factor = stack_factor
        self.audio_placeholder = audio_placeholder

        if isinstance(text_processor, transformers.MllamaProcessor):
            self.tokenizer: transformers.PreTrainedTokenizerFast = (
                text_processor.tokenizer
            )
        else:
            self.tokenizer = text_processor

        super().__init__(audio_processor=audio_processor, text_processor=text_processor)

        self.audio_token_replacement = self.tokenizer.bos_token
        assert (
            self.audio_token_replacement is not None
        ), "The tokenizer has no EOS token. Cannot recover."
        # if tokenizer.pad_token_id is None:
        #     tokenizer.pad_token_id = tokenizer.eos_token_id

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config: BahasaConfig = transformers.AutoConfig.from_pretrained(
            pretrained_model_name_or_path, **kwargs
        )
        audio_processor = transformers.AutoProcessor.from_pretrained(
            config.audio_model_id
            or config.audio_config._name_or_path
            or "facebook/wav2vec2-base-960h"
        )

        text_processor = transformers.AutoProcessor.from_pretrained(
            config._text_config.name_or_path, **kwargs
        )
        text_processor.tokenizer.padding_side = "left"
        text_processor.tokenizer.pad_token = text_processor.tokenizer.eos_token
        new_template = """{{- bos_token }}\n{%- if custom_tools is defined %}\n    {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n    {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n    {%- if strftime_now is defined %}\n        {%- set date_string = strftime_now(\"%d %b %Y\") %}\n    {%- else %}\n        {%- set date_string = \"26 Jul 2024\" %}\n    {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n    {%- set system_message = messages[0]['content']|trim %}\n    {%- set messages = messages[1:] %}\n{%- else %}\n    {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %}      \n{%- for message in messages %}\n    {%- if message['content'] is iterable and not message['content'] is string %}\n        {%- for content in message['content'] %}\n            {%- if content['type'] == 'image' %}\n                {%- set image_ns.has_images = true %}\n            {%- endif %}\n        {%- endfor %}\n    {%- endif %}\n{%- endfor %}\n\n{#- Always include system message, regardless of images #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n    {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n    {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n    {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n    {{- \"Do not use variables.\\n\\n\" }}\n    {%- for t in tools %}\n        {{- t | tojson(indent=4) }}\n        {{- \"\\n\\n\" }}\n    {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n    {#- Extract the first user message so we can plug it in here #}\n    {%- if messages | length != 0 %}\n        {%- set first_user_message = messages[0]['content']|trim %}\n        {%- set messages = messages[1:] %}\n    {%- else %}\n        {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n    {%- endif %}\n    {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n    {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n    {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n    {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n    {{- \"Do not use variables.\\n\\n\" }}\n    {%- for t in tools %}\n        {{- t | tojson(indent=4) }}\n        {{- \"\\n\\n\" }}\n    {%- endfor %}\n    {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n    {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n    {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n        {%- if message['content'] is string %}\n            {{- message['content'] }}\n        {%- else %}\n            {%- for content in message['content'] %}\n                {%- if content['type'] == 'image' %}\n                    {{- '<|image|>' }}\n                {%- elif content['type'] == 'text' %}\n                    {{- content['text'] }}\n                {%- endif %}\n            {%- endfor %}\n        {%- endif %}\n        {{- '<|eot_id|>' }}\n    {%- elif 'tool_calls' in message %}\n        {%- if not message.tool_calls|length == 1 %}\n            {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n        {%- endif %}\n        {%- set tool_call = message.tool_calls[0].function %}\n        {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n        {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n        {{- '\"parameters\": ' }}\n        {{- tool_call.arguments | tojson }}\n        {{- \"}\" }}\n        {{- \"<|eot_id|>\" }}\n    {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n        {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n        {%- if message.content is mapping or message.content is iterable %}\n            {{- message.content | tojson }}\n        {%- else %}\n            {{- message.content }}\n        {%- endif %}\n        {{- \"<|eot_id|>\" }}\n    {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n    {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n"""
        text_processor.tokenizer.chat_template = new_template

        return cls(
            audio_processor=audio_processor,
            text_processor=text_processor,
            stack_factor=config.stack_factor,
        )

    def __call__(
        self,
        text: Optional[str] = None,
        audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
        images: Optional[transformers.image_utils.ImageInput] = None,
        sampling_rate: Optional[int] = None,
        return_tensors: Optional[
            Union[str, transformers.TensorType]
        ] = transformers.TensorType.PYTORCH,
        **kwargs,
    ) -> transformers.BatchFeature:
        """
        Main method to prepare for the model one text sequence and audio. This method forwards the `text`
        and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
        audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`):
                The sequence to be encoded. Sequence can be a string or (pretokenized string).
            audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
                NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
                sample length of the audio.
            sampling_rate (`int`, *optional*, defaults to 16000):
                Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
                you are doing.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
            - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
              Returned when `audio` is not `None`.
            - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
        """
        # TODO: Add support for multiple audio and text inputs.
        data = {}
        audio_embed_frames = 0
        if audio is not None and len(audio) > 0:
            if self.audio_padding == "max_length":
                # 30 seconds is the expected length for Whisper
                assert sampling_rate is not None, "Sampling rate must be provided."
                audio_len = 30 * sampling_rate
            else:
                audio_len = audio.shape[-1]
            # It's guaranteed that the number of frames is less than or equal to this amount.
            # For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
            # Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
            nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4))
            audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
            data["audio_token_len"] = [audio_embed_frames]

            # Main audio processing. The processor is model-specific.
            x = self.audio_processor(
                audio,
                sampling_rate=sampling_rate,
                padding="longest",
                max_length=audio_len,
                **kwargs,
            )
            if "input_features" in x:
                data["audio_values"] = x.input_features
            else:
                data["audio_values"] = x.input_values

        if text is not None:
            assert isinstance(
                text, str
            ), "Text must be a string. Batch mode not supported yet."
            if self.audio_placeholder in text:
                if "audio_token_len" not in data:
                    raise ValueError(
                        f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
                    )

                start_idx = len(
                    self.tokenizer.encode(
                        text[: text.index(self.audio_placeholder)],
                        add_special_tokens=False,
                    )
                )
                data["audio_token_start_idx"] = [start_idx]

                # Replace the audio placeholder with the audio token.
                #   e.g. "Transcribe\n<|audio|>" -> "Transcribe </s></s></s></s></s></s></s></s>"
                #        where the number of </s> is the number of audio frames.
                text = text.replace(
                    self.audio_placeholder,
                    self.audio_token_replacement * audio_embed_frames,
                )

            # Special tokens like BOS should already have been added by the caller.
            data.update(
                self.text_processor(
                    text=[text], images=images, add_special_tokens=False, **kwargs
                )
            )

        return transformers.BatchFeature(data=data, tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        text_processor_input_names = self.text_processor.model_input_names
        audio_processor_input_names = self.audio_processor.model_input_names
        return list(set(text_processor_input_names + audio_processor_input_names))


BahasaProcessor.register_for_auto_class()

transformers.AutoProcessor.register(BahasaConfig, BahasaProcessor)