LaferriereJC's picture
Update README.md
c1e234e verified
---
license: mit
---
code used to train
- https://gist.github.com/thistleknot/398466a4bd75a1315825d7f04db635a6/91194e69c5220e536f45536e6b7dd66995c847b1
currently setup to translate individual premises (sentences)
#datasets
- Yale-LILY/FOLIO
- apergo-ai/text2log (1661 records)
how to load
```
device = "cuda"
model_name_or_path = "microsoft/Phi-3-mini-4k-instruct"
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name_or_path, torch_dtype=torch.bfloat16, device_map=device)
reft_model = pyreft.ReftModel.load(
"LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft", model
)
```
how to use
```
!git clone https://huggingface.co/LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft
from transformers import AutoModelForCausalLM
import torch
import pyreft
import os
import transformers
device = 'cuda'
model_name_or_path = "microsoft/Phi-3-mini-4k-instruct"
attn_implementation = "eager"
torch_dtype = torch.float16
#"microsoft/Phi-3-mini-4k-instruct"
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name_or_path, torch_dtype=torch.bfloat16, device_map=device,trust_remote_code=True)
# Define the PyReFT configuration
layers = range(model.config.num_hidden_layers)
representations = [{
"component": f"model.layers[{l}].output",
"intervention": pyreft.LoreftIntervention(
embed_dim=model.config.hidden_size,
low_rank_dimension=16
)
} for l in layers]
reft_config = pyreft.ReftConfig(representations=representations)
# Initialize the PyReFT model
reft_model = pyreft.get_reft_model(model, reft_config)
# Load the saved PyReFT model
local_directory = "./Phi-3-mini-4k-instruct-FOL-pyreft"
interventions = {}
for l in layers:
component = f"model.layers[{l}].output"
file_path = os.path.join(local_directory, f"intkey_comp.{component}.unit.pos.nunit.1#0.bin")
if os.path.exists(file_path):
with open(file_path, "rb") as f:
adjusted_key = f"comp.{component}.unit.pos.nunit.1#0"
interventions[adjusted_key] = torch.load(f)
# Apply the loaded weights to the model
for component, state_dict in interventions.items():
if component in reft_model.interventions:
reft_model.interventions[component][0].load_state_dict(state_dict)
else:
print(f"Key mismatch: {component} not found in reft_model.interventions")
# Set the device to CUDA
reft_model.set_device("cuda")
# Verify the model
reft_model.print_trainable_parameters()
#model.half()
# get tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name_or_path, model_max_length=216,
padding_side="right", use_fast=True,
attn_implementation=attn_implementation
#, add_eos_token=True, add_bos_token=True
)
tokenizer.pad_token = tokenizer.eos_token
# position info about the interventions
share_weights = True # whether the prefix and suffix interventions sharing weights.
positions="f3+l3" # the intervening positions of prefix tokens (f[irst]1) and suffix tokens (l[ast]1).
first_n, last_n = pyreft.parse_positions(positions)
terminators = [
tokenizer.eos_token_id,
]
prompt_no_input_template = """\n<|user|>:%s</s>\n<|assistant|>:"""
test_instruction = f"""tell me something I don't know"""
# tokenize and prepare the input
prompt = prompt_no_input_template % test_instruction
prompt = tokenizer(prompt, return_tensors="pt").to(device)
unit_locations = torch.IntTensor([pyreft.get_intervention_locations(
last_position=prompt["input_ids"].shape[-1],
first_n=first_n,
last_n=last_n,
pad_mode="last",
num_interventions=len(reft_config.representations),
share_weights=share_weights
)]).permute(1, 0, 2).tolist()
_, reft_response = reft_model.generate(
prompt, unit_locations={"sources->base": (None, unit_locations)},
intervene_on_prompt=True, max_new_tokens=537, do_sample=True, top_k=50,temperature=0.7,
eos_token_id=terminators, early_stopping=True
)
print(tokenizer.decode(reft_response[0], skip_special_tokens=True))
```
response
```
:tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1))
```
training settings
```
per_device_train_batch_size=6,
logging_steps=1,
optim='paged_lion_8bit',
gradient_checkpointing_kwargs={"use_reentrant": False},
learning_rate=0.0003,
warmup_ratio=.1,
adam_beta2=0.95,
adam_epsilon=0.00001,
save_strategy='epoch',
max_grad_norm=1.0,
lr_scheduler_type='cosine',
```
Evaluation:
I kept tweaking the model until I got confirmations from chatgpt 4, but the final training error (1 epoch) came in consistently under .5 (10 point EMA with alpha of .42)
Loss
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62578ad28c6638f8a93e8856/Y_uAhaHH3ko6Z6tjYSy0y.png)
:tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1))
Does the fol expression fit?
Depending on how I asked (for example, it would almost always suggest revisions if I asked
- Is the fol expression adequate?
- How faithful is the fol expression?
)