marianmt-zh_cn-th

  • source languages: zh_cn
  • target languages: th
  • dataset:
  • model: transformer-align
  • pre-processing: normalization + SentencePiece
  • test set scores: syllable: 15.95, word: 8.43

Training

Training scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-zh_cn-th.

export WANDB_PROJECT=marianmt-zh_cn-th
python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--output_dir ../models/marianmt-zh_cn-th \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--source_lang zh --target_lang th \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--metric_tokenize th_syllable --fp16 

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th")
model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu()

src_text = [
    '我爱你',
    '我想吃米饭',
]
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
print([tokenizer.decode(t, skip_special_tokens=True) for t in translated])

> ['ผมรักคุณนะ', 'ฉันอยากกินข้าว']

Requirements

transformers==4.6.0
torch==1.8.0
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Lalita/marianmt-zh_cn-th 1